scholarly journals Oxidative Annulation of Diphenylpropanamides via In Situ Hypervalent Iodine-Promoted Intramolecular C–N/C–O Bond Formation

SynOpen ◽  
2021 ◽  
Vol 05 (04) ◽  
pp. 327-334
Author(s):  
Zhi-Peng Liang ◽  
Ying-Xin Yu ◽  
Yang Wang ◽  
Zheng-Guang Wu ◽  
Yuan-Yuan Sun

AbstractAn aryl iodide catalyzed intramolecular oxidative transformation of diphenylpropanamide derivatives is described that can readily afford the C–N/C–O coupling products in a single step. The speed of the 1,3-aryl iodide migration process determines the diversity of target compound generation in this reaction. This straightforward approach can be performed with the use of inexpensive and readily available catalyst, transition-metal-free, mild conditions and good functional group tolerance.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Xuemin Li ◽  
Guangchen Li ◽  
Yifu Cheng ◽  
Yunfei Du

Abstract The application of hypervalent iodine species generated in situ in organic transformations has emerged as a useful and powerful tool in organic synthesis, allowing for the construction of a series of bond formats via oxidative coupling. Among these transformations, the catalytic aryl iodide can be oxidized to hypervalent iodine species, which then undergoes oxidative reaction with the substrates and the aryl iodine regenerated again once the first cyclic cycle of the reaction is completed. This review aims to systematically summarize and discuss the main progress in the application of in situ-generated hypervalent iodine species, providing references and highlights for synthetic chemists who might be interested in this field of hypervalent iodine chemistry.


RSC Advances ◽  
2019 ◽  
Vol 9 (14) ◽  
pp. 7718-7722 ◽  
Author(s):  
Hong Zhang ◽  
Jinhai Shen ◽  
Zhenhui Yang ◽  
Xiuling Cui

An expedient hypervalent iodine(iii)-mediated approach to obtain substituted quinoxalines from readily available enaminones has been developed under mild conditions.


Synthesis ◽  
2018 ◽  
Vol 50 (15) ◽  
pp. 2891-2896 ◽  
Author(s):  
Jinna Song ◽  
Xihe Bi ◽  
Qi Zhang ◽  
Kaki Raveendra Babu ◽  
Zhouliang Huang

We report a visible light-assisted one-pot method for the synthesis of polynitrophenols through radical tandem hydroxylation and nitration of arylboronic acids by utilizing copper(II) nitrate tri­hydrate as the nitro source. This method features mild conditions, a simple procedure, and good functional group tolerance. Compared to conventional methods, this work provides a straightforward approach for the polynitration of aromatic compounds.


Synthesis ◽  
2017 ◽  
Vol 49 (18) ◽  
pp. 4303-4308 ◽  
Author(s):  
Dong Li ◽  
Chuancheng Zhang ◽  
Qiang Yue ◽  
Zhen Xiao ◽  
Xianglan Wang ◽  
...  

An efficient protocol for the synthesis of O-aroyl-N,N-dimethylhydroxylamines, which are important electrophilic amination reagents, is described. The reaction between carboxylic acids and N,N-dimethylformamide is mediated by hypervalent iodine and occurs under mild conditions at room temperature to give the desired products in good yields. The process shows good functional group compatibility and air and moisture tolerance.


2013 ◽  
Vol 661 ◽  
pp. 47-52
Author(s):  
Gang Chen ◽  
Chun Hua Yang

Gold nanoparticles (AuNPs) were attached to the surface of alumina particles by an in-situ immobilizing method. SEM and XPS analysis showed that the coverage of alumina particles by AuNPs increased as the amount of alumina decreased; AuNPs onto alumina particles by the conventional colloidal deposition method were also prepared, whose TEM showed that the coverage of AuNPs was evidently smaller than that in the case of modified colloidal deposition method,although the AuNPs were spread almost uniformly over the surface of alumina particles. Au-immobilized alumina particles were subsequently utilized as the catalysts for direct amination of benzene with NH3H2O as an aminating agent and H2O2 as an oxidant under mild conditions. The reaction conditions were optimized: when catalyst amount was 2.0 g, reaction temperature was 50 °C, NH3H2O amount was 60 mL, H2O2 amount was 30 mL, and reaction time is 2 h, Au-immobilized alumina particles showed the highest aniline yield (1.96 mg) for 25 mL benzene.


Synthesis ◽  
2019 ◽  
Vol 51 (22) ◽  
pp. 4170-4182 ◽  
Author(s):  
Lin-Lin Zhang ◽  
Ya-Ting Li ◽  
Ting Gao ◽  
Sha-Sha Guo ◽  
Bei Yang ◽  
...  

A sequential multistep reaction toward 5-thio- or 5-selenotriazoles has been established by generation of both copper(I) triazolides and sulfenylating or selenylating agents in situ, starting from elemental sulfur or selenium. This reaction features mild conditions, readily available and broad-scope substrates, good functional group compatibility, high efficiency and regioselectivity, easy operation, and ligand-free CuI.


2015 ◽  
Vol 21 (3) ◽  
pp. 159-163 ◽  
Author(s):  
T.A. Jenifer Vijay ◽  
Nagarakere C. Sandhya ◽  
C.S. Pavankumar ◽  
Kanchugarakoppal S. Rangappa ◽  
Kempegowda Mantelingu

AbstractAn efficient ligand- and catalyst-free intramolecular S-arylation leading to the direct synthesis of indalothiochromen-4-ones from simple dithioesters under mild conditions has been developed. This method is particularly noteworthy given its experimental simplicity, high generality, and good functional group toleration.


2019 ◽  
Author(s):  
Felipe Cesar Sousa e Silva ◽  
Nguyen T Van ◽  
Sarah Wengryniuk

Herein, we report the metal-free direct C–H arylation of enones mediated by hypervalent iodine reagents. The reaction proceeds via a reductive iodonium Claisen rearrangement of <i>in situ </i>b-pyridinium silyl enol ethers. The aryl groups are derived from ArI(O<sub>2</sub>CCF<sub>3</sub>)<sub>2</sub> reagents, which are readily accessed from the parent iodoarenes. It is tolerant of a wide range of substitution patterns and the incorporated arenes maintain the valuable iodine functional handle. Mechanistic investigations implicate arylation via an umpoled “enolonium” species and that the presence of a b-pyridinium moiety is critical for desired C–C bond formation.


2020 ◽  
Author(s):  
Tao Yang ◽  
Yi Jiang ◽  
Yixin Luo ◽  
Yu Lan ◽  
Ming Joo Koh

<div>Multicomponent catalytic processes that can generate multiple C(sp<sup>3</sup>)-C(sp<sup>3</sup>) bonds in a single step under mild conditions,particularly if the catalysts and substrates are inexpensive, are highly sought-after in chemistry research for complex molecule synthesis. Here, we disclose an efficient Ni-catalysed reductive protocol that chemoselectively merges alkenyl amides with two different</div><div>aliphatic electrophiles. Starting materials are readily accessible from stable and abundant feedstock and products are furnished in up to >98:2 regioisomeric ratios. The present strategy eliminates the use of sensitive organometallic reagents, tolerates a wide array of complex functionalities and enables regiodivergent addition of two primary alkyl groups bearing similar electronic and steric attributes across aliphatic C=C bonds with exquisite control of site selectivity. Utility is underscored by the concise synthesis of bioactive compounds and post-reaction functionalizations leading to structurally diverse scaffolds. DFT studies revealed that the regiochemical outcome originates from the orthogonal reactivity and chemoselectivity profiles of in situ-generated organonickel species.</div>


2018 ◽  
Vol 14 ◽  
pp. 1087-1094 ◽  
Author(s):  
Toshifumi Dohi ◽  
Shohei Ueda ◽  
Kosuke Iwasaki ◽  
Yusuke Tsunoda ◽  
Koji Morimoto ◽  
...  

An oxidation system comprising phenyliodine(III) diacetate (PIDA) and iodosobenzene with inorganic bromide, i.e., sodium bromide, in an organic solvent led to the direct introduction of carboxylic acids into benzylic C–H bonds under mild conditions. The unique radical species, generated by the homolytic cleavage of the labile I(III)–Br bond of the in situ-formed bromo-λ3-iodane, initiated benzylic carboxylation with a high degree of selectivity for the secondary benzylic position.


Sign in / Sign up

Export Citation Format

Share Document