How Antibiotics Stewardship Can Be Safely Implemented in Patients with Septic Shock?

2021 ◽  
Vol 42 (05) ◽  
pp. 689-697
Author(s):  
Etienne de Montmollin ◽  
Jean-François Timsit

AbstractIn critically ill patients with sepsis and septic shock, the need for prompt and adequate antibiotic therapy is balanced by the risk of excessive antibiotic exposure that leads to emergence of multidrug-resistant pathogens. As such, antibiotic stewardship programs propose a set of operating rules from antibiotic treatment initiation to de-escalation and finally cessation. In this review, we will describe the rationale for early antibiotic treatment in septic patients, how to optimize initial antibiotic treatment, rules for early treatment discontinuation in pathogen-negative sepsis, and optimal duration of antimicrobial therapy.

2014 ◽  
Vol 42 (8) ◽  
pp. 1749-1755 ◽  
Author(s):  
Ricard Ferrer ◽  
Ignacio Martin-Loeches ◽  
Gary Phillips ◽  
Tiffany M. Osborn ◽  
Sean Townsend ◽  
...  

2015 ◽  
Vol 43 (10) ◽  
pp. 2258-2259 ◽  
Author(s):  
Marya D. Zilberberg ◽  
Andrew F. Shorr

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Andreas Hohn ◽  
Nina Balfer ◽  
Bernhard Heising ◽  
Sabine Hertel ◽  
Jan C. Wiemer ◽  
...  

MedPharmRes ◽  
2018 ◽  
Vol 2 (3) ◽  
pp. 27-32
Author(s):  
Bien Le ◽  
Dai Huynh ◽  
Mai Tuan ◽  
Minh Phan ◽  
Thao Pham ◽  
...  

Objectives: to evaluate the fluid responsiveness according to fluid bolus triggers and their combination in severe sepsis and septic shock. Design: observational study. Patients and Methods: patients with severe sepsis and septic shock who already received fluid after rescue phase of resuscitation. Fluid bolus (FB) was prescribed upon perceived hypovolemic manifestations: low central venous pressure (CVP), low blood pressure, tachycardia, low urine output (UOP), hyperlactatemia. FB was performed by Ringer lactate 500 ml/30 min and responsiveness was defined by increasing in stroke volume (SV) ≥15%. Results: 84 patients were enrolled, among them 30 responded to FB (35.7%). Demographic and hemodynamic profile before fluid bolus were similar between responders and non-responders, except CVP was lower in responders (7.3 ± 3.4 mmHg vs 9.2 ± 3.6 mmHg) (p 0.018). Fluid response in low CVP, low blood pressure, tachycardia, low UOP, hyperlactatemia were 48.6%, 47.4%, 38.5%, 37.0%, 36.8% making the odd ratio (OR) of these triggers were 2.81 (1.09-7.27), 1.60 (0.54-4.78), 1.89 (0.58-6.18), 1.15 (0.41-3.27) and 1.27 (0.46-3.53) respectively. Although CVP < 8 mmHg had a higher response rate, the association was not consistent at lower cut-offs. The combination of these triggers appeared to raise fluid response but did not reach statistical significance: 26.7% (1 trigger), 31.0% (2 triggers), 35.7% (3 triggers), 55.6% (4 triggers), 100% (5 triggers). Conclusions: fluid responsiveness was low in optimization phase of resuscitation. No fluid bolus trigger was superior to the others in term of providing a higher responsiveness, their combination did not improve fluid responsiveness as well.


Sign in / Sign up

Export Citation Format

Share Document