Versatile Aryl Halide Hydroxylation

Synfacts ◽  
2021 ◽  
Vol 18 (01) ◽  
pp. 0029
Keyword(s):  
Author(s):  
Autumn Flynn ◽  
Kelly McDaniel ◽  
Meredith Hughes ◽  
David Vogt ◽  
Nathan Jui

A photocatalytic system for the dearomative hydroarylation of benzene derivatives has been developed. Using a combination of an organic photoredox catalyst and an amine reductant, this process operates through a reductive radical-polar crossover mechanism where aryl halide reduction triggers a regioselective cyclization event, giving rise to a range of complex spirocyclic cyclohexadienes. This light-driven protocol functions at room temperature in a green solvent system (aq. MeCN), without the need for precious metal-based catalysts or reagents, or the generation of stoichiometric metal byproducts.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Linda Zh. Nikoshvili ◽  
Nadezhda A. Nemygina ◽  
Tatiana E. Khudyakova ◽  
Irina Yu. Tiamina ◽  
Alexey V. Bykov ◽  
...  

This paper describes the synthesis of Pd-containing catalysts based on nonfunctionalized hypercrosslinked polystyrene via impregnation with Pd acetate. Developed Pd nanoparticulate catalyst allowed achieving conversion of aryl halide up to 90% in Suzuki cross-coupling reaction under mild conditions and at the absence of phase-transfer agents. During the selective hydrogenation of triple C-C bond of 2-methyl-3-butyn-2-ol, up to 96% selectivity with respect to corresponding olefinic alcohol was found at 95% conversion. The influences of the procedure of catalyst synthesis like precursor decomposition and reductive activation method on Pd nanoparticle formation are discussed.


ChemInform ◽  
2012 ◽  
Vol 43 (49) ◽  
pp. no-no
Author(s):  
Qiaodong Wen ◽  
Jisong Jin ◽  
Binbin Hu ◽  
Ping Lu ◽  
Yanguang Wang

2008 ◽  
Vol 49 (5) ◽  
pp. 794-798 ◽  
Author(s):  
Jennifer E. Golden ◽  
Shanina D. Sanders ◽  
Kristine M. Muller ◽  
Roland W. Bürli
Keyword(s):  

2010 ◽  
Vol 132 (39) ◽  
pp. 13590-13591 ◽  
Author(s):  
Lei Zhou ◽  
Fei Ye ◽  
Yan Zhang ◽  
Jianbo Wang

2017 ◽  
Vol 147 (6) ◽  
pp. 1333-1338 ◽  
Author(s):  
Zhi-Chuan Wu ◽  
Quan Yang ◽  
Xin Ge ◽  
Yi-Ming Ren ◽  
Ren-Chun Yang ◽  
...  

Author(s):  
Douglass F. Taber

Kiyotomi Kaneda of Osaka University devised (Angew. Chem. Int. Ed. 2010, 49, 5545) gold nanoparticles that efficiently deoxygenated an epoxide 1 to the alkene 2. Robert G. Bergman of the University of California, Berkeley, and Jonathan A. Ellman, now of Yale University, reported (J. Am. Chem. Soc. 2010, 132, 11408) a related protocol for deoxygenating 1,2-diols. Dennis A. Dougherty of Caltech established (Org. Lett. 2010, 12, 3990) that an acid chloride 3 could be reduced to the phosphonate 4. Pei-Qiang Huang of Xiamen University effected (Synlett 2010, 1829) reduction of an amide 5 by activation with Tf2O followed by reduction with NaBH4. André B. Charette of the Université de Montreal described (J. Am. Chem. Soc. 2010, 132, 12817) parallel results with Tf2O/Et3SiH. David Milstein of the Weizmann Institute of Science devised (J. Am. Chem. Soc. 2010, 132, 16756) a Ru catalyst for the alternative reduction of an amide 7 to the amine 8 and the alcohol 9. Shi-Kai Tian of the University of Science and Technology of China effected (Chem. Commun. 2010, 46, 6180) reduction of a benzylic sulfonamide 10 to the hydrocarbon 11. Thirty years ago, S. Yamamura of Nagoya University reported (Chem. Commun. 1967, 1049) the efficient reduction of a ketone to the corresponding methylene with Zn/HCl. Hirokazu Arimoto of Tohoku University established (Tetrahedron Lett. 2010, 51, 4534) that a modified Zn/TMSCl protocol could be used following ozonolysis to effect conversion of an alkene 12 to the methylene 13. José Barluenga and Carlos Valdés of the Universidad de Oviedo effected (Angew. Chem. Int. Ed. 2010, 49, 4993) reduction of a ketone to the ether 16 by way of the tosylhydrazone 14. Kyoko Nozaki and Makoto Yamashita of the University of Tokyo and Dennis P. Curran of the University of Pittsburgh found (J. Am. Chem. Soc. 2010, 132, 11449) that the hydride 18 (actually a complex dimer) could effect the direct reduction of a halide 17 and also function as the hydrogen atom donor for free radical reduction and as the hydride donor for the Pd-mediated reduction of an aryl halide.


Sign in / Sign up

Export Citation Format

Share Document