scholarly journals Radiation Protection in Interventional Radiology

Author(s):  
Tushar Garg ◽  
Apurva Shrigiriwar

AbstractThere has been a rapid development in the field of interventional radiology over recent years, and this has led to a rapid increase in the number of interventional radiology procedures being performed. There is, however, a growing concern regarding radiation exposure to the patients and the operators during these procedures. In this article, we review the basics of radiation exposure, radiation protection techniques, radiation protection tools available to interventional radiologists, and radiation protection during pregnancy.

Author(s):  
Hilary Johnson ◽  
Sally Miller ◽  
Prianca Tawde ◽  
Bethany LaPenta ◽  
Daniel Teo ◽  
...  

Cardiovascular, orthopedic, and interventional radiology procedures using fluoroscopy require healthcare professionals to wear heavy lead garments for radiation protection, sometimes for up to 12 hours per day. Wearing lead garments for prolonged periods of time can lead to musculoskeletal injuries, discomfort, and fatigue. MobiLead is a mobile lead garment frame that was developed to reduce the weight supported by the user in an effort to mitigate these problems. The MobiLead system moves the lower garment load off the user’s body to a structural ground-supported frame and redistributes the upper load from the shoulders to the hips through a torso frame. The system is compact and maximizes the limited space available in operating rooms, while still giving the surgeon adequate mobility for various emergency procedures. Preliminary analysis of device effectiveness was conducted using electromyography and qualitative surgeon user feedback surveys. This paper will discuss the design, fabrication, and testing procedures for this mobile radiation protection system optimizing both support and mobility.


2012 ◽  
Vol 63 (3_suppl) ◽  
pp. S49-S58 ◽  
Author(s):  
Joshua Burrill ◽  
Manraj K.S. Heran

Interventional radiology procedures are increasingly in demand in both the adult and pediatric populations. Pediatric procedures mirror many of the adult procedures but with increased complexity due to considerations related to patient size and the requirements for sedation and radiation protection. This article reviews the various nonvascular pediatric interventional procedures and provides information on sedation and radiation protection. The aim is to provide a greater exposure to the possible treatment options for pediatric patients and to facilitate understanding of imaging after various interventions.


2013 ◽  
Vol 66 (7-8) ◽  
pp. 335-340
Author(s):  
Predrag Avramov ◽  
Milena Avramov ◽  
Mirela Jukovic ◽  
Vuk Kadic ◽  
Viktor Till

Introduction. Radiology is the fastest growing discipline of medicine thanks to the implementation of new technologies and very rapid development of imaging diagnostic procedures in the last few decades. On the other hand, the development of imaging diagnostic procedures has put aside the traditional gaining of experience by working on real patients, and the need for other alternatives of learning interventional radiology procedures has emerged. A new method of virtual approach was added as an excellent alternative to the currently known methods of training on physical models and animals. Virtual reality represents a computer- generated reconstruction of anatomical environment with tactile interactions and it enables operators not only to learn on their own mistakes without compromising the patient?s safety, but also to enhance their knowledge and experience. Discussion. It is true that studies published so far on the validity of endovascular simulators have shown certain improvement of operator?s technical skills and reduction in time needed for the procedure, but on the other hand, it is still a question whether these skills are transferable to the real patients in the angio room. Conclusion. With further improvement of technology, shortcomings of virtual approach to interventional procedures learning will be less significant and this procedure is likely to become the only method of learning in the near future.


Author(s):  
Alexander Marc König ◽  
Robin Etzel ◽  
Rohit Philip Thomas ◽  
Andreas H. Mahnken

Background The increasing number of minimally invasive fluoroscopy-guided interventions is likely to result in higher radiation exposure for interventional radiologists and medical staff. Not only the number of procedures but also the complexity of these procedures and therefore the exposure time as well are growing. There are various radiation protection means for protecting medical staff against scatter radiation. This article will provide an overview of the different protection devices, their efficacy in terms of radiation protection and the corresponding dosimetry. Method The following key words were used to search the literature: radiation protection, eye lens dose, radiation exposure in interventional radiology, cataract, cancer risk, dosimetry in interventional radiology, radiation dosimetry. Results and Conclusion Optimal radiation protection always requires a combination of different radiation protection devices. Radiation protection and monitoring of the head and neck, especially of the eye lenses, is not yet sufficiently accepted and further development is needed in this field. To reduce the risk of cataract, new protection glasses with an integrated dosimeter are to be introduced in clinical routine practice. Key Points:  Citation Format


2002 ◽  
Vol 41 (06) ◽  
pp. 245-251 ◽  
Author(s):  
M. Knietsch ◽  
T. Spillmann ◽  
E.-G. Grünbaum ◽  
R. Bauer ◽  
M. Puille

SummaryAim: Establishment of radioiodine treatment of feline hyperthyroidism in veterinary routine in accordance with German radiation protection regulations. Patients and methods: 35 cats with proven hyperthyroidism were treated with 131I in a special ward. Thyroid uptake and effective halflife were determined using gammacamera dosimetry. Patients were released when measured whole body activity was below the limit defined in the German “Strahlenschutzverordnung”. Results: 17/20 cats treated with 150 MBq radioiodine and 15/15 cats treated with 250 MBq had normal thyroid function after therapy, normal values for FT3 and FT4 were reached after two and normal TSH levels after three weeks. In 14 cats normal thyroid function was confirmed by controls 3-6 months later. Thyroidal iodine uptake was 24 ± 10%, effective halflife 2.5 ± 0.7 days. Whole body activity <1 MBq was reached 13 ± 4 days after application of 131I. Radiation exposure of cat owners was estimated as 1.97 Sv/MBq for adults. Conclusion: Radioiodine therapy of feline hyper-thyroidism is highly effective and safe. It can easily be performed in accordance with German radiation protection regulations, although this requires hospitalisation for approximately two weeks. Practical considerations on radiation exposure of cat owners do not justify this long interval. Regulations for the veterinary use of radioactive substances similar to existing regulations for medical use in humans are higly desirable.


1985 ◽  
Author(s):  
M. Bamberg ◽  
D. van Beuningen ◽  
W. Gössner ◽  
Friedrich Heuck ◽  
H. Jung ◽  
...  

2008 ◽  
Vol 47 (04) ◽  
pp. 175-177 ◽  
Author(s):  
J. Dolezal

SummaryAim: To assess a radiation exposure and the quality of radiation protection concerning a nuclear medicine staff at our department as a six-year retrospective study. Therapeutic radionuclides such as 131I, 153Sm, 186Re, 32P, 90Y and diagnostic ones as a 99mTc, 201Tl, 67Ga, 111In were used. Material, method: The effective dose was evaluated in the period of 2001–2006 for nuclear medicine physicians (n = 5), technologists (n = 9) and radiopharmacists (n = 2). A personnel film dosimeter and thermoluminescent ring dosimeter for measuring (1-month periods) the personal dose equivalent Hp(10) and Hp(0,07) were used by nuclear medicine workers. The wearing of dosimeters was obligatory within the framework of a nationwide service for personal dosimetry. The total administered activity of all radionuclides during these six years at our department was 17,779 GBq (99mTc 14 708 GBq, 131I 2490 GBq, others 581 GBq). The administered activity of 99mTc was similar, but the administered activity of 131I in 2006 increased by 200%, as compared with the year 2001. Results: The mean and one standard deviation (SD) of the personal annual effective dose (mSv) for nuclear medicine physicians was 1.9 ± 0.6, 1.8 ± 0.8, 1.2 ± 0.8, 1.4 ± 0.8, 1.3 ± 0.6, 0.8 ± 0.4 and for nuclear medicine technologists was 1.9 ± 0.8, 1.7 ± 1.4, 1.0 ± 1.0, 1.1 ± 1.2, 0.9 ± 0.4 and 0.7 ± 0.2 in 2001, 2002, 2003, 2004, 2005 and 2006, respectively. The mean (n = 2, estimate of SD makes little sense) of the personal annual effective dose (mSv) for radiopharmacists was 3.2, 1.8, 0.6, 1.3, 0.6 and 0.3. Although the administered activity of 131I increased, the mean personal effective dose per year decreased during the six years. Conclusion: In all three professional groups of nuclear medicine workers a decreasing radiation exposure was found, although the administered activity of 131I increased during this six-year period. Our observations suggest successful radiation protection measures at our department.


Sign in / Sign up

Export Citation Format

Share Document