scholarly journals A Standard Mammography Unit – Standard 3D Ultrasound Probe Fusion Prototype: First Results

2017 ◽  
Vol 77 (06) ◽  
pp. 679-685 ◽  
Author(s):  
Rüdiger Schulz-Wendtland ◽  
Sebastian Jud ◽  
Peter Fasching ◽  
Arndt Hartmann ◽  
Marcus Radicke ◽  
...  

Abstract Aim The combination of different imaging modalities through the use of fusion devices promises significant diagnostic improvement for breast pathology. The aim of this study was to evaluate image quality and clinical feasibility of a prototype fusion device (fusion prototype) constructed from a standard tomosynthesis mammography unit and a standard 3D ultrasound probe using a new method of breast compression. Materials and Methods Imaging was performed on 5 mastectomy specimens from patients with confirmed DCIS or invasive carcinoma (BI-RADS™ 6). For the preclinical fusion prototype an ABVS system ultrasound probe from an Acuson S2000 was integrated into a MAMMOMAT Inspiration (both Siemens Healthcare Ltd) and, with the aid of a newly developed compression plate, digital mammogram and automated 3D ultrasound images were obtained. Results The quality of digital mammogram images produced by the fusion prototype was comparable to those produced using conventional compression. The newly developed compression plate did not influence the applied x-ray dose. The method was not more labour intensive or time-consuming than conventional mammography. From the technical perspective, fusion of the two modalities was achievable. Conclusion In this study, using only a few mastectomy specimens, the fusion of an automated 3D ultrasound machine with a standard mammography unit delivered images of comparable quality to conventional mammography. The device allows simultaneous ultrasound – the second important imaging modality in complementary breast diagnostics – without increasing examination time or requiring additional staff.

Author(s):  
Alex Ling Yu Hung ◽  
John Galeotti

Abstract Purpose Ultrasound compounding is to combine sonographic information captured from different angles and produce a single image. It is important for multi-view reconstruction, but as of yet there is no consensus on best practices for compounding. Current popular methods inevitably suppress or altogether leave out bright or dark regions that are useful and potentially introduce new artifacts. In this work, we establish a new algorithm to compound the overlapping pixels from different viewpoints in ultrasound. Methods Inspired by image fusion algorithms and ultrasound confidence, we uniquely leverage Laplacian and Gaussian pyramids to preserve the maximum boundary contrast without overemphasizing noise, speckles, and other artifacts in the compounded image, while taking the direction of the ultrasound probe into account. Besides, we designed an algorithm that detects the useful boundaries in ultrasound images to further improve the boundary contrast. Results We evaluate our algorithm by comparing it with previous algorithms both qualitatively and quantitatively, and we show that our approach not only preserves both light and dark details, but also somewhat suppresses noise and artifacts, rather than amplifying them. We also show that our algorithm can improve the performance of downstream tasks like segmentation. Conclusion Our proposed method that is based on confidence, contrast, and both Gaussian and Laplacian pyramids appears to be better at preserving contrast at anatomic boundaries while suppressing artifacts than any of the other approaches we tested. This algorithm may have future utility with downstream tasks such as 3D ultrasound volume reconstruction and segmentation.


2021 ◽  
Vol 10 (12) ◽  
pp. 759-766
Author(s):  
Jamie A. Nicholson ◽  
William M. Oliver ◽  
Tom J. MacGillivray ◽  
C. Michael Robinson ◽  
A. Hamish R. W. Simpson

Aims The aim of this study was to establish a reliable method for producing 3D reconstruction of sonographic callus. Methods A cohort of ten closed tibial shaft fractures managed with intramedullary nailing underwent ultrasound scanning at two, six, and 12 weeks post-surgery. Ultrasound capture was performed using infrared tracking technology to map each image to a 3D lattice. Using echo intensity, semi-automated mapping was performed to produce an anatomical 3D representation of the fracture site. Two reviewers independently performed 3D reconstructions and kappa coefficient was used to determine agreement. A further validation study was undertaken with ten reviewers to estimate the clinical application of this imaging technique using the intraclass correlation coefficient (ICC). Results Nine of the ten patients achieved union at six months. At six weeks, seven patients had bridging callus of ≥ one cortex on the 3D reconstruction and when present all achieved union. Compared to six-week radiographs, no bridging callus was present in any patient. Of the three patients lacking sonographic bridging callus, one went onto a nonunion (77.8% sensitive and 100% specific to predict union). At 12 weeks, nine patients had bridging callus at ≥ one cortex on 3D reconstruction (100%-sensitive and 100%-specific to predict union). Presence of sonographic bridging callus on 3D reconstruction demonstrated excellent reviewer agreement on ICC at 0.87 (95% confidence interval 0.74 to 0.96). Conclusion 3D fracture reconstruction can be created using multiple ultrasound images in order to evaluate the presence of bridging callus. This imaging modality has the potential to enhance the usability and accuracy of identification of early fracture healing. Cite this article: Bone Joint Res 2021;10(12):759–766.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6613
Author(s):  
Taehyung Kim ◽  
Dong-Hyun Kang ◽  
Shinyong Shim ◽  
Maesoon Im ◽  
Bo Kyoung Seo ◽  
...  

This study aims at creating low-cost, three-dimensional (3D), freehand ultrasound image reconstructions from commercial two-dimensional (2D) probes. The low-cost system that can be attached to a commercial 2D ultrasound probe consists of commercial ultrasonic distance sensors, a gimbal, and an inertial measurement unit (IMU). To calibrate irregular movements of the probe during scanning, relative position data were collected from the ultrasonic sensors that were attached to a gimbal. The directional information was provided from the IMU. All the data and 2D ultrasound images were combined using a personal computer to reconstruct 3D ultrasound image. The relative position error of the proposed system was less than 0.5%. The overall shape of the cystic mass in the breast phantom was similar to those from 2D and sections of 3D ultrasound images. Additionally, the pressure and deformations of lesions could be obtained and compensated by contacting the probe to the surface of the soft tissue using the acquired position data. The proposed method did not require any initial marks or receivers for the reconstruction of a 3D ultrasound image using a 2D ultrasound probe. Even though our system is less than $500, a valuable volumetric ultrasound image could be provided to the users.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Mohammed Obaid ◽  
Qianwei Zhang ◽  
Scott J. Adams ◽  
Reza Fotouhi ◽  
Haron Obaid

Abstract Background Telesonography systems have been developed to overcome barriers to accessing diagnostic ultrasound for patients in rural and remote communities. However, most previous telesonography systems have been designed for performing only abdominal and obstetrical exams. In this paper, we describe the development and assessment of a musculoskeletal (MSK) telesonography system. Methods We developed a 4-degrees-of-freedom (DOF) robot to manipulate an ultrasound probe. The robot was remotely controlled by a radiologist operating a joystick at the master site. The telesonography system was used to scan participants’ forearms, and all participants were conventionally scanned for comparison. Participants and radiologists were surveyed regarding their experience. Images from both scanning methods were independently assessed by an MSK radiologist. Results All ten ultrasound exams were successfully performed using our developed MSK telesonography system, with no significant delay in movement. The duration (mean ± standard deviation) of telerobotic and conventional exams was 4.6 ± 0.9 and 1.4 ± 0.5 min, respectively (p = 0.039). An MSK radiologist rated quality of real-time ultrasound images transmitted over an internet connection as “very good” for all telesonography exams, and participants rated communication with the radiologist as “very good” or “good” for all exams. Visualisation of anatomic structures was similar between telerobotic and conventional methods, with no statistically significant differences. Conclusions The MSK telesonography system developed in this study is feasible for performing soft tissue ultrasound exams. The advancement of this system may allow MSK ultrasound exams to be performed over long distances, increasing access to ultrasound for patients in rural and remote communities.


2006 ◽  
Vol 2006 ◽  
pp. 1-11 ◽  
Author(s):  
Z. G. Wang ◽  
Y. Liu ◽  
L. Z. Sun ◽  
G. Wang ◽  
L. L. Fajardo

A new imaging modality framework, called elasto-mammography, is proposed to generate the elastograms of breast tissues based on conventional X-ray mammography. The displacement information is extracted from mammography projections before and after breast compression. Incorporating the displacement measurement, an elastography reconstruction algorithm is specifically developed to estimate the elastic moduli of heterogeneous breast tissues. Case studies with numerical breast phantoms are conducted to demonstrate the capability of the proposed elasto-mammography. Effects of noise with measurement, geometric mismatch, and elastic contrast ratio are evaluated in the numerical simulations. It is shown that the proposed methodology is stable and robust for characterization of the elastic moduli of breast tissues from the projective displacement measurement.


2003 ◽  
Vol 30 (7) ◽  
pp. 1648-1659 ◽  
Author(s):  
Ning Hu ◽  
Dónal B. Downey ◽  
Aaron Fenster ◽  
Hanif M. Ladak

Sign in / Sign up

Export Citation Format

Share Document