4 degrees of freedom
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 10)

H-INDEX

9
(FIVE YEARS 1)

2022 ◽  
pp. 1-18
Author(s):  
Merve Bazman ◽  
Nural Yilmaz ◽  
Ugur Tumerdem

Abstract In this paper, a novel 4 degrees-of-freedom articulated parallel forceps mechanism with a large orientation workspace (±/−90deg in pitch and yaw, 360deg in roll rotations) is presented for robotic minimally invasive surgery. The proposed 3RSR-1UUP parallel mechanism utilizes a UUP center-leg which can convert thrust motion of the 3RSR mechanism into gripping motion. This design eliminates the need for an additional gripper actuator, but also introduces the problem of unintentional gripper opening/closing due to parasitic motion of the 3RSR mechanism. Here, position kinematics of the proposed mechanism, including the workspace, is analyzed in detail, and a solution to the parasitic motion problem is provided. Human in the loop simulations with a haptic interface are also performed to confirm the feasibility of the proposed design.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Mohammed Obaid ◽  
Qianwei Zhang ◽  
Scott J. Adams ◽  
Reza Fotouhi ◽  
Haron Obaid

Abstract Background Telesonography systems have been developed to overcome barriers to accessing diagnostic ultrasound for patients in rural and remote communities. However, most previous telesonography systems have been designed for performing only abdominal and obstetrical exams. In this paper, we describe the development and assessment of a musculoskeletal (MSK) telesonography system. Methods We developed a 4-degrees-of-freedom (DOF) robot to manipulate an ultrasound probe. The robot was remotely controlled by a radiologist operating a joystick at the master site. The telesonography system was used to scan participants’ forearms, and all participants were conventionally scanned for comparison. Participants and radiologists were surveyed regarding their experience. Images from both scanning methods were independently assessed by an MSK radiologist. Results All ten ultrasound exams were successfully performed using our developed MSK telesonography system, with no significant delay in movement. The duration (mean ± standard deviation) of telerobotic and conventional exams was 4.6 ± 0.9 and 1.4 ± 0.5 min, respectively (p = 0.039). An MSK radiologist rated quality of real-time ultrasound images transmitted over an internet connection as “very good” for all telesonography exams, and participants rated communication with the radiologist as “very good” or “good” for all exams. Visualisation of anatomic structures was similar between telerobotic and conventional methods, with no statistically significant differences. Conclusions The MSK telesonography system developed in this study is feasible for performing soft tissue ultrasound exams. The advancement of this system may allow MSK ultrasound exams to be performed over long distances, increasing access to ultrasound for patients in rural and remote communities.


2021 ◽  
Vol 9 (3) ◽  
pp. 320 ◽  
Author(s):  
Ross Eldred ◽  
Johnathan Lussier ◽  
Anthony Pollman

This article details the design, construction and implementation of a novel, spherical unmanned underwater vehicle (UUV) prototype for operations within confined, entanglement-prone marine environments. The nature of shipwreck interiors, the exploration of which the vehicle was originally designed, imposes special risks that constrain system requirements while promoting other attributes uncommon in typical open-water UUV designs. The invention, the Wreck Interior Exploration Vehicle (WIEVLE), was constructed using 3-D additive manufacturing technology combined with relatively inexpensive commercial components. Similar inventions are compared, followed by a thorough review of the physical and functional characteristics of the system. The key attributes of the design include a smooth, spherical hull with 360-degree sensor coverage, and a fixed, upward-angled thruster core, relying on inherent buoyancy to take the place of a dedicated depth-changing mechanism. Initial open-loop control testing demonstrated stable 4 degrees of freedom (DOF) maneuvering capability. The article concludes with an overview of the results of the initial testing, a review of how the key system design attributes address the unique shipwreck interior exploration challenges, and a plan for the future development of the platform.


2021 ◽  
Vol 10 (1) ◽  
pp. 26
Author(s):  
Zhen Li ◽  
Xiaoming Zhang ◽  
Junxiang Tan ◽  
Hua Liu

Registration is essential for terrestrial LiDAR (light detection and ranging) scanning point clouds. The registration of indoor point clouds is especially challenging due to the occlusion and self-similarity of indoor structures. This paper proposes a 4 degrees of freedom (4DOF) coarse registration method that fully takes advantage of the knowledge that the equipment is levelled or the inclination compensated for by a tilt sensor in data acquisition. The method decomposes the 4DOF registration problem into two parts: (1) horizontal alignment using ortho-projected images and (2) vertical alignment. The ortho-projected images are generated using points between the floor and ceiling, and the horizontal alignment is achieved by the matching of the source and target ortho-projected images using the 2D line features detected from them. The vertical alignment is achieved by making the height of the floor and ceiling in the source and target points equivalent. Two datasets, one with five stations and the other with 20 stations, were used to evaluate the performance of the proposed method. The experimental results showed that the proposed method achieved 80% and 63% successful registration rates (SRRs) in a simple scene and a challenging scene, respectively. The SRR in the simple scene is only lower than that of the keypoint-based four-point congruent set (K4PCS) method. The SRR in the challenging scene is better than all five comparison methods. Even though the proposed method still has some limitations, the proposed method provides an alternative to solve the indoor point cloud registration problem.


Author(s):  
Darina Hroncova

The presented paper deals with the use of computer simulation in the design of a robot model with 4 degrees of freedom of movement. The MSC Adams program is used in the computer simulation, and the use of the Matlab program is also shown. The robot's mechanism is an open kinematic chain. During kinematic analysis, attention is paid to solving the direct problem of kinematics in MSC Adams and in Matlab. The result of the solution is the calculated trajectory of the movement of the selected point of the end effector. The trajectory is shown in graphical form. In Matlab, the magnitude of the position vector of the effector point is calculated as a function of time at the selected course of angular deflection in individual kinematic pairs at constant angular velocities in individual joints of the robot.


Helia ◽  
2019 ◽  
Vol 42 (71) ◽  
pp. 221-228
Author(s):  
A. I. Soroka ◽  
V. A. Lyakh

Abstract Two inbreds of mutant origin, differing in the number of bracts, were crossed to obtain the F1 hybrid. One mutant line had 24.5 ± 1.01 bracts, while the other, 78.6 ± 1.69 bracts. The F1 hybrid had an average value between parents, which practically did not differ from the mean value in the F2 population. The variability of the trait under study in the F2 population was continuous, varying from 20 to 84 bracts. This indicated the probable participation of several genes with an additive effect in the control of the number of bracts. Assuming that the differences between the parental lines are due to two pairs of genes, the F2 plant population, grown in 2016, was divided into 5 classes. In that population the observed classes ratio turned out to be close to the theoretically expected ratio of 1 : 4 : 6 : 4 : 1. Over the next two years F2 populations were tested in a similar way. In all the cases, the calculated chi-square value did not exceed the critical value for 4 degrees of freedom and 5 % significance level. This gave reason to talk about the two-loci control of a such quantitative trait as the number of bracts. The participation of two non-allelic genes in the control of this trait is also proved by matching the actual number of plants in the parental classes to the theoretically expected number of plants. Thus, the number of bracts depends on the number of dominant alleles of two different genes in the genotype.


2019 ◽  
Vol 26 (2) ◽  
pp. 77-84 ◽  
Author(s):  
Tom Kusznir ◽  
Jarosław Smoczek

Abstract Payload transportation with UAV’s (Unmanned Aerial Vehicles) has become a topic of interest in research with possibilities for a wide range of applications such as transporting emergency equipment to otherwise inaccessible areas. In general, the problem of transporting cable suspended loads lies in the under actuation, which causes oscillations during horizontal transport of the payload. Excessive oscillations increase both the time required to accurately position the payload and may be detrimental to the objects in the workspace or the payload itself. In this article, we present a method to control a quadrotor with a cable suspended payload. While the quadrotor itself is a nonlinear system, the problem of payload transportation with a quadrotor adds additional complexities due to both input coupling and additional under actuation of the system. For simplicity, we fix the quadrotor to a planar motion, giving it a total of 4 degrees of freedom. The quadrotor with the cable suspended payload is modelled using the Euler-Lagrange equations of motion and then partitioned into translation and attitude dynamics. The design methodology is based on simplifying the system by using a variable transformation to decouple the inputs, after which sliding mode control is used for the translational and pendulum dynamics while a feedback linearizing controller is used for the rotational dynamics of the quadrotor. The sliding mode parameters are chosen so stability is guaranteed within a certain region of attraction. Lastly, the results of the numerical simulations created in MATLAB/Simulink are presented to verify the effectiveness of the proposed control strategy.


Sign in / Sign up

Export Citation Format

Share Document