4.2 Applications of SPAAC and SPANC in Life Sciences

2022 ◽  
Author(s):  
L. J. N. Janssen ◽  
D. Blanco-Ania

AbstractThe bioorthogonal, strain-promoted azide–alkyne cycloaddition (SPAAC) and the strain-promoted alkyne–nitrone cycloaddition (SPANC) reactions have been used for conjugation with high affinity and specificity. In contrast to the cytotoxic copper-catalyzed cycloaddition, both SPAAC and SPANC are inert in biological environments. This chapter reviews the developments and applications of SPAAC and SPANC in life sciences reported since 2004, when Bertozzi et al. published the first bioorthogonal reaction.

2015 ◽  
Vol 112 (32) ◽  
pp. 9902-9907 ◽  
Author(s):  
Pietro Sormanni ◽  
Francesco A. Aprile ◽  
Michele Vendruscolo

Antibodies are powerful tools in life sciences research, as well as in diagnostic and therapeutic applications, because of their ability to bind given molecules with high affinity and specificity. Using current methods, however, it is laborious and sometimes difficult to generate antibodies to target specific epitopes within a protein, in particular if these epitopes are not effective antigens. Here we present a method to rationally design antibodies to enable them to bind virtually any chosen disordered epitope in a protein. The procedure consists in the sequence-based design of one or more complementary peptides targeting a selected disordered epitope and the subsequent grafting of such peptides on an antibody scaffold. We illustrate the method by designing six single-domain antibodies to bind different epitopes within three disease-related intrinsically disordered proteins and peptides (α-synuclein, Aβ42, and IAPP). Our results show that all these designed antibodies bind their targets with good affinity and specificity. As an example of an application, we show that one of these antibodies inhibits the aggregation of α-synuclein at substoichiometric concentrations and that binding occurs at the selected epitope. Taken together, these results indicate that the design strategy that we propose makes it possible to obtain antibodies targeting given epitopes in disordered proteins or protein regions.


Author(s):  
Martin Hagopian ◽  
Michael D. Gershon ◽  
Eladio A. Nunez

The ability of cardiac tissues to take up norepinephrine from an external medium is well known. Two mechanisms, called Uptake and Uptake respectively by Iversen have been differentiated. Uptake is a high affinity system associated with adrenergic neuronal elements. Uptake is a low affinity system, with a higher maximum rate than that of Uptake. Uptake has been associated with extraneuronal tissues such as cardiac muscle, fibroblasts or vascular smooth muscle. At low perfusion concentrations of norepinephrine most of the amine taken up by Uptake is metabolized. In order to study the localization of sites of norepinephrine storage following its uptake in the active bat heart, tritiated norepinephrine (2.5 mCi; 0.064 mg) was given intravenously to 2 bats. Monoamine oxidase had been inhibited with pheniprazine (10 mg/kg) one hour previously to decrease metabolism of norepinephrine.


Author(s):  
Andreas Hofmann ◽  
Anne Simon ◽  
Tanja Grkovic ◽  
Malcolm Jones
Keyword(s):  

Nature ◽  
2020 ◽  
Author(s):  
Bec Crew ◽  
Hepeng Jia ◽  
Mark Zastrow
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document