13 Electrochemistry in Laboratory Flow Systems

2022 ◽  
Author(s):  
A. A. Folgueiras-Amador ◽  
J. W. Hodgson ◽  
R. C. D. Brown

Organic electrosynthesis in flow reactors is an area of increasing interest, with efficient mass transport and high electrode area to reactor volume present in many flow electrolysis cell designs facilitating higher rates of production with high selectivity. The controlled reaction environment available in flow cells also offers opportunities to develop new electrochemical processes. In this chapter, various types of electrochemical flow cells are reviewed in the context of laboratory synthesis, paying particular attention to how the different reactor environments impact upon the electrochemical processes, and the factors responsible for good cell performance. Coverage includes well-established plane-parallel-plate designs, reactors with small interelectrode gaps, extended-channel electrolysis cells, and highly sophisticated designs with rapidly rotating electrodes to enhance mass transport. In each case, illustrative electrosyntheses are presented.

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1221
Author(s):  
Domenico Frattini ◽  
Gopalu Karunakaran ◽  
Eun-Bum Cho ◽  
Yongchai Kwon

The use of microbial fuel cells (MFCs) is quickly spreading in the fields of bioenergy generation and wastewater treatment, as well as in the biosynthesis of valuable compounds for microbial electrolysis cells (MECs). MFCs and MECs have not been able to penetrate the market as economic feasibility is lost when their performances are boosted by nanomaterials. The nanoparticles used to realize or decorate the components (electrodes or the membrane) have expensive processing, purification, and raw resource costs. In recent decades, many studies have approached the problem of finding green synthesis routes and cheap sources for the most common nanoparticles employed in MFCs and MECs. These nanoparticles are essentially made of carbon, noble metals, and non-noble metals, together with a few other few doping elements. In this review, the most recent findings regarding the sustainable preparation of nanoparticles, in terms of syntheses and sources, are collected, commented, and proposed for applications in MFC and MEC devices. The use of naturally occurring, recycled, and alternative raw materials for nanoparticle synthesis is showcased in detail here. Several examples of how these naturally derived or sustainable nanoparticles have been employed in microbial devices are also examined. The results demonstrate that this approach is valuable and could represent a solid alternative to the expensive use of commercial nanoparticles.


2014 ◽  
Vol 111 (37) ◽  
pp. 13391-13396 ◽  
Author(s):  
Orr H. Shapiro ◽  
Vicente I. Fernandez ◽  
Melissa Garren ◽  
Jeffrey S. Guasto ◽  
François P. Debaillon-Vesque ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5525
Author(s):  
Yelitza Delgado ◽  
Francisco J. Fernández-Morales ◽  
Javier Llanos

Although the first published works on electrodeposition dates from more than one century ago (1905), the uses of this technique in the recovery of metals are attracting an increasing interest from the scientific community in the recent years. Moreover, the intense use of metals in electronics and the necessity to assure a second life of these devices in a context of circular economy, have increased the interest of the scientific community on electrodeposition, with almost 3000 works published per year nowadays. In this review, we aim to revise the most relevant and recent publications in the application of electrodeposition for metal recovery. These contributions have been classified into four main groups of approaches: (1) treatment and reuse of wastewater; (2) use of ionic liquids; (3) use of bio-electrochemical processes (microbial fuel cells and microbial electrolysis cells) and (4) integration of electrodeposition with other processes (bioleaching, adsorption, membrane processes, etc.). This would increase the awareness about the importance of the technology and would serve as a starting point for anyone that aims to start working in the field.


2017 ◽  
Vol 5 (44) ◽  
pp. 22945-22951 ◽  
Author(s):  
Libin Lei ◽  
Zetian Tao ◽  
Xiaoming Wang ◽  
John P. Lemmon ◽  
Fanglin Chen

A proton-conducting solid oxide electrolysis cell (H-SOEC) is a promising device that efficiently converts electrical energy to chemical energy.


2020 ◽  
Vol 4 (6) ◽  
pp. 2691-2706
Author(s):  
Naoya Fujiwara ◽  
Shohei Tada ◽  
Ryuji Kikuchi

A novel direct power-to-gas system utilizing solid oxide electrolysis cells was modelled and evaluated to clarify its potential advantages.


Sign in / Sign up

Export Citation Format

Share Document