Activity of a Specific Inhibitor of the BCR-ABL Tyrosine Kinase in the Blast Crisis of Chronic Myeloid Leukemia and Acute Lymphoblastic Leukemia with the Philadelphia Chromosome

2001 ◽  
Vol 344 (14) ◽  
pp. 1038-1042 ◽  
Author(s):  
Brian J. Druker ◽  
Charles L. Sawyers ◽  
Hagop Kantarjian ◽  
Debra J. Resta ◽  
Sofia Fernandes Reese ◽  
...  
1982 ◽  
Vol 68 (3) ◽  
pp. 257-263 ◽  
Author(s):  
Mario Cazzola ◽  
Giulio Nalli ◽  
Ercole Brusamolino ◽  
Maurizio Daccò ◽  
Angela Ghizzi ◽  
...  

Five of 40 patients with chronic myeloid leukemia (CML) had lymphoid blast crisis and 4 of them achieved complete remission of metamorphosis with vincristine and prednisone. While in hematologic remission, two of these subjects developed meningeal leukemia. Clinical and biologic data indicated that the course of the disease after lymphoid blast crisis was very similar to that of acute lymphoblastic leukemia (ALL). It is suggested that patients with CML who develop lymphoid blast crisis should be treated with an intensive therapeutic protocol including early prevention of meningeal leukemia.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4660-4660 ◽  
Author(s):  
Pascal Vannuffel ◽  
Luana Bavaro ◽  
Friedel Nollet ◽  
Asena Aynaci ◽  
Margherita Martelli ◽  
...  

Chronic myeloid leukemia (CML) and acute lymphoblastic leukemia (ALL) are, respectively, a myeloproliferative and a lymphoproliferative neoplasm that can be characterized by the chimeric fusion oncogene BCR-ABL1. Tyrosine Kinase Inhibitors (TKI) are the standard therapy for patients with CML/ALL. However, mutations of the BCR-ABL1 kinase domain constitute a major cause of treatment failure in CML and ALL receiving TKI therapy. While 2nd and 3rd generation TKI have proven their efficacy against mutated BCR-ABL1-mediated clonal expansion, the presence of compound mutations can produce high level of resistance to these TKIs. Even the last addition to the TKI armamentarium, ponatinib, remains ineffective against some BCR-ABL1 compound mutations (Zabriskie, M.S., et al., BCR-ABL1 Compound Mutations Combining Key Kinase Domain Positions Confer Clinical Resistance to Ponatinib in Ph Chromosome-Positive Leukemia. Cancer Cell, 2014. 26(3):p.428-442). Therefore, the distinction between compound (different mutations present on 1 unique malignant clone) and polyclonal mutations (different mutations present on 2 or more different clones) is of great clinical importance in order to select the most suitable treatment and to estimate outcomes. The objective of this study is to determine in a straightforward way whether BCR-ABL1 mutations discovered by Next Generation Sequencing are compound mutations or polyclonal mutations. A simple proof-of-concept experiment was first performed by using 3 synthetic oligonucleotides (gBlocks, IDT) mimicking the presence of compound mutations versus polyclonal mutations in resistant leukemia cells. The first oligo harbored the M237I mutation, the second oligo mutations E255K, E279K, V299L, T315I, F359V, A380S, H396R, S417Y, F459K and F486S and the third one contained all the mutations. Dual-color probes assays have been set up to target specifically 2 different mutations. Mixtures of 2 oligonucleotides harboring 1 mutation each versus 1 oligonucleotide harboring 2 mutations have been compared by performing duplex droplet digital PCR (ddPCR) reactions on the Bio-Rad ddPCR QX200 System. Linkage detection is based on the observation that the presence of 2 targets on the same DNA molecule increases the number of double-positive droplets relative to the number expected due to chance. Automatic linkage evaluation was made by the QuantaSoft Software and mathematical calculations refer to (Regan, J.F., et al., A rapid molecular approach for chromosomal phasing. PLoS One, 2015. 10(3): p. e0118270). The first experiment successfully validated the detection of mutations residing on two different oligonucleotides (polyclonal mutations) versus mutations on the same molecule (compound mutations). When performing serial dilutions of 2 oligonucleotides containing different mutations, a sensitivity of 10%:90% was achieved with a good linearity (r2=0.97). Mixing experiment also showed that ddPCR phasing could distinguish between a mixture of compound and polyclonal mutations versus and the sole presence of polyclonal mutations at the same sensitivity and linearity levels. Moreover, no influence of the genomic distance between mutations (from position 255 to position 562) was observed. The strategy was further applied to 20 clinical samples from CML/ALL patients characterized by multiple resistance mutations. Drop-phase is a rapid (< 4 hours), scalable (100 samples), technically easy to perform and cost-effective method. This strategy will help to identify compound mutations in patients with TKI-resistant CML/ALL and allow to modulate the patient's drug strategy and to prevent progression and therapeutic failure. Disclosures Vannuffel: Incyte: Consultancy. Soverini:Incyte: Consultancy.


Blood ◽  
2009 ◽  
Vol 114 (26) ◽  
pp. 5271-5278 ◽  
Author(s):  
Franck E. Nicolini ◽  
Michael J. Mauro ◽  
Giovanni Martinelli ◽  
Dong-Wook Kim ◽  
Simona Soverini ◽  
...  

Abstract The BCR–ABL T315I mutation represents a major mechanism of resistance to tyrosine kinase inhibitors (TKIs). The objectives of this retrospective observational study were to estimate overall and progression-free survival for chronic myeloid leukemia in chronic-phase (CP), accelerated-phase (AP), or blastic-phase (BP) and Philadelphia chromosome—positive (Ph)+ acute lymphoblastic leukemia (ALL) patients with T315I mutation. Medical records of 222 patients from 9 countries were reviewed; data were analyzed using log-rank tests and Cox proportional hazard models. Median age at T315I mutation detection was 54 years; 57% cases were men. Median time between TKI treatment initiation and T315I mutation detection was 29.2, 15.4, 5.8, and 9.1 months, respectively, for CP, AP, BP, and Ph+ ALL patients. After T315I mutation detection, second-generation TKIs were used in 56% of cases, hydroxyurea in 39%, imatinib in 35%, cytarabine in 26%, MK-0457 in 11%, stem cell transplantation in 17%, and interferon-α in 6% of cases. Median overall survival from T315I mutation detection was 22.4, 28.4, 4.0, and 4.9 months, and median progression-free survival was 11.5, 22.2, 1.8, and 2.5 months, respectively, for CP, AP, BP, and Ph+ ALL patients. These results confirm that survival of patients harboring a T315I mutation is dependent on disease phase at the time of mutation detection.


Sign in / Sign up

Export Citation Format

Share Document