scholarly journals 24-Hour Urinary Sodium and Potassium Excretion and Cardiovascular Risk

Author(s):  
Yuan Ma ◽  
Feng J. He ◽  
Qi Sun ◽  
Changzheng Yuan ◽  
Lyanne M. Kieneker ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaofu Du ◽  
Le Fang ◽  
Jianwei Xu ◽  
Xiangyu Chen ◽  
Yamin Bai ◽  
...  

AbstractThe direction and magnitude of the association between sodium and potassium excretion and blood pressure (BP) may differ depending on the characteristics of the study participant or the intake assessment method. Our objective was to assess the relationship between BP, hypertension and 24-h urinary sodium and potassium excretion among Chinese adults. A total of 1424 provincially representative Chinese residents aged 18 to 69 years participated in a cross-sectional survey in 2017 that included demographic data, physical measurements and 24-h urine collection. In this study, the average 24-h urinary sodium and potassium excretion and sodium-to-potassium ratio were 3811.4 mg/day, 1449.3 mg/day, and 4.9, respectively. After multivariable adjustment, each 1000 mg difference in 24-h urinary sodium excretion was significantly associated with systolic BP (0.64 mm Hg; 95% confidence interval [CI] 0.05–1.24) and diastolic BP (0.45 mm Hg; 95% CI 0.08–0.81), and each 1000 mg difference in 24-h urinary potassium excretion was inversely associated with systolic BP (− 3.07 mm Hg; 95% CI − 4.57 to − 1.57) and diastolic BP (− 0.94 mm Hg; 95% CI − 1.87 to − 0.02). The sodium-to-potassium ratio was significantly associated with systolic BP (0.78 mm Hg; 95% CI 0.42–1.13) and diastolic BP (0.31 mm Hg; 95% CI 0.10–0.53) per 1-unit increase. These associations were mainly driven by the hypertensive group. Those with a sodium intake above about 4900 mg/24 h or with a potassium intake below about 1000 mg/24 h had a higher risk of hypertension. At higher but not lower levels of 24-h urinary sodium excretion, potassium can better blunt the sodium-BP relationship. The adjusted odds ratios (ORs) of hypertension in the highest quartile compared with the lowest quartile of excretion were 0.54 (95% CI 0.35–0.84) for potassium and 1.71 (95% CI 1.16–2.51) for the sodium-to-potassium ratio, while the corresponding OR for sodium was not significant (OR, 1.28; 95% CI 0.83–1.98). Our results showed that the sodium intake was significantly associated with BP among hypertensive patients and the inverse association between potassium intake and BP was stronger and involved a larger fraction of the population, especially those with a potassium intake below 1000 mg/24 h should probably increase their potassium intake.


2019 ◽  
Vol 286 ◽  
pp. 175-180 ◽  
Author(s):  
Pietro Amedeo Modesti ◽  
Ilaria Marzotti ◽  
Stefano Rapi ◽  
Angela Rogolino ◽  
Francesco P. Cappuccio ◽  
...  

JAMA ◽  
2018 ◽  
Vol 319 (12) ◽  
pp. 1201
Author(s):  
Joachim H. Ix ◽  
Cheryl A. M. Anderson

BMJ ◽  
2019 ◽  
pp. l772 ◽  
Author(s):  
Martin O’Donnell ◽  
Andrew Mente ◽  
Sumathy Rangarajan ◽  
Matthew J McQueen ◽  
Neil O’Leary ◽  
...  

AbstractObjectiveTo evaluate the joint association of sodium and potassium urinary excretion (as surrogate measures of intake) with cardiovascular events and mortality, in the context of current World Health Organization recommendations for daily intake (<2.0 g sodium, >3.5 g potassium) in adults.DesignInternational prospective cohort study.Setting18 high, middle, and low income countries, sampled from urban and rural communities.Participants103 570 people who provided morning fasting urine samples.Main outcome measuresAssociation of estimated 24 hour urinary sodium and potassium excretion (surrogates for intake) with all cause mortality and major cardiovascular events, using multivariable Cox regression. A six category variable for joint sodium and potassium was generated: sodium excretion (low (<3 g/day), moderate (3-5 g/day), and high (>5 g/day) sodium intakes) by potassium excretion (greater/equal or less than median 2.1 g/day).ResultsMean estimated sodium and potassium urinary excretion were 4.93 g/day and 2.12 g/day, respectively. After a median follow-up of 8.2 years, 7884 (6.1%) participants had died or experienced a major cardiovascular event. Increasing urinary sodium excretion was positively associated with increasing potassium excretion (unadjusted r=0.34), and only 0.002% had a concomitant urinary excretion of <2.0 g/day of sodium and >3.5 g/day of potassium. A J-shaped association was observed of sodium excretion and inverse association of potassium excretion with death and cardiovascular events. For joint sodium and potassium excretion categories, the lowest risk of death and cardiovascular events occurred in the group with moderate sodium excretion (3-5 g/day) and higher potassium excretion (21.9% of cohort). Compared with this reference group, the combinations of low potassium with low sodium excretion (hazard ratio 1.23, 1.11 to 1.37; 7.4% of cohort) and low potassium with high sodium excretion (1.21, 1.11 to 1.32; 13.8% of cohort) were associated with the highest risk, followed by low sodium excretion (1.19, 1.02 to 1.38; 3.3% of cohort) and high sodium excretion (1.10, 1.02 to 1.18; 29.6% of cohort) among those with potassium excretion greater than the median. Higher potassium excretion attenuated the increased cardiovascular risk associated with high sodium excretion (P for interaction=0.007).ConclusionsThese findings suggest that the simultaneous target of low sodium intake (<2 g/day) with high potassium intake (>3.5 g/day) is extremely uncommon. Combined moderate sodium intake (3-5 g/day) with high potassium intake is associated with the lowest risk of mortality and cardiovascular events.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Raha Pazoki ◽  
Evangelos Evangelou ◽  
David Mosen-Ansorena ◽  
Rui Climaco Pinto ◽  
Ibrahim Karaman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document