Rare Earth Elements and the European Union

Author(s):  
Maximilian Rech
2019 ◽  
Vol 108 ◽  
pp. 02011
Author(s):  
Karolina Kossakowska ◽  
Katarzyna Grzesik

Rare Earth Elements (REEs) are identified as critical raw materials for the European Union economy. REEs are not currently produced in the EU, while there are several sources not properly addressed. Within the ENVIREE project tailings from New Kankberg (Sweden) and Covas (Portugal) were identified as rich in REEs and chosen for recovery processing. The Life Cycle Assessment (LCA) methodology was used to evaluate the environmental impact of REEs recovery. The aim of this study is the detailed analysis of several scenarios with different electricity production schemes of REE recovery. The study discusses the share of energy use in the overall impact on the environment, taking into account diversification in the electricity production structure among EU countries. The energy use is a significant contributor to the overall environmental impact of studied cases. Its share in the total environmental burden is reaching up to 47%. The results show that applying the average electricity scheme production for Europe may lead to biased LCA results. For the accurate LCA results the local production schemes of energy for certain countries should be chosen.


Author(s):  
Sophia Kalantzakos

Once a leader in the production and trading of rare earths, the United States relinquished the reins to China in the 1990s. The People’s Republic of China declared rare earths “protected and strategic materials” and proceeded to control production and processing, introduced export quotas, and sought to dominate the supply chain for crucial applications. It also made investments in mines worldwide. The 2010 crisis caused a parabolic rise in prices, leading the United States, the European Union, and Japan to file a complaint against China at the World Trade Organization, in 2012, and to launch trilateral cooperation workshops, starting in 2011, to promote recycling, substitution, and innovation. China lost its WTO appeal and removed the export quotas in May 2015. The market corrected itself, and it may seem today that China lost an initial battle; but closer examination indicates that it may not have lost the war.


Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 721 ◽  
Author(s):  
Marino Gergoric ◽  
Christophe Ravaux ◽  
Britt-Marie Steenari ◽  
Fredrik Espegren ◽  
Teodora Retegan

Over the last decade, rare-earth elements (REEs) have become critical in the European Union (EU) in terms of supply risk, and they remain critical to this day. End-of-life electronic scrap (e-scrap) recycling can provide a partial solution to the supply of REEs in the EU. One such product is end-of-life neodymium (NdFeB) magnets, which can be a feasible source of Nd, Dy, and Pr. REEs are normally leached out of NdFeB magnet waste using strong mineral acids, which can have an adverse impact on the environment in case of accidental release. Organic acids can be a solution to this problem due to easier handling, degradability, and less poisonous gas evolution during leaching. However, the literature on leaching NdFeB magnets waste with organic acids is very scarce and poorly investigated. This paper investigates the recovery of Nd, Pr, and Dy from NdFeB magnets waste powder using leaching and solvent extraction. The goal was to determine potential selectivity between the recovery of REEs and other impurities in the material. Citric acid and acetic acid were used as leaching agents, while di-(2-ethylhexyl) phosphoric acid (D2EHPA) was used for preliminary solvent extraction tests. The highest leaching efficiencies were achieved with 1 mol/L citric acid (where almost 100% of the REEs were leached after 24 h) and 1 mol/L acetic acid (where >95% of the REEs were leached). Fe and Co—two major impurities—were co-leached into the solution, and no leaching selectivity was achieved between the impurities and the REEs. The solvent extraction experiments with D2EHPA in Solvent 70 on 1 mol/L leachates of both acetic acid and citric acid showed much higher affinity for Nd than Fe, with better extraction properties observed in acetic acid leachate. The results showed that acetic acid and citric acid are feasible for the recovery of REEs out of NdFeB waste under certain conditions.


Author(s):  
Herman Lelieveldt ◽  
Sebastiaan Princen

Sign in / Sign up

Export Citation Format

Share Document