Analytical Solution to Two-Dimensional Axisymmetric Gas Flow with Klinkenberg Effect

1995 ◽  
Vol 121 (5) ◽  
pp. 417-420 ◽  
Author(s):  
Jagath J. Kaluarachchi
2012 ◽  
Vol 91 (105) ◽  
pp. 83-93 ◽  
Author(s):  
Nevena Stevanovic ◽  
Vladan Djordjevic

The exact analytical solution for the compressible two-dimensional gas flow in the microbearing is presented. The general slip-corrected Reynolds lubrication equation is derived and it is shown that it possesses an exact analytical solution. It is obtained by a suitable transformation of the independent variable, and it provides the pressure distribution in the bearing as well as the mass flow rate through it. By neglecting the rarefaction effect, this solution is also applicable to the continuum gas flow in the bearing, which also does not exist in the open literature. The obtained analytical solution can be usefully applied for testing the other, experimental or numerical results.


Author(s):  
G Atefi ◽  
M A Abdous ◽  
A Ganjehkaviri ◽  
N Moalemi

The objective of this article is to derive an analytical solution for a two-dimensional temperature field in a hollow cylinder, which is subjected to a periodic boundary condition at the outer surface, while the inner surface is insulated. The material is assumed to be homogeneous and isotropic with time-independent thermal properties. Because of the time-dependent term in the boundary condition, Duhamel's theorem is used to solve the problem for a periodic boundary condition. The periodic boundary condition is decomposed using the Fourier series. This condition is simulated with harmonic oscillation; however, there are some differences with the real situation. To solve this problem, first of all the boundary condition is assumed to be steady. By applying the method of separation of variables, the temperature distribution in a hollow cylinder can be obtained. Then, the boundary condition is assumed to be transient. In both these cases, the solutions are separately calculated. By using Duhamel's theorem, the temperature distribution field in a hollow cylinder is obtained. The final result is plotted with respect to the Biot and Fourier numbers. There is good agreement between the results of the proposed method and those reported by others for this geometry under a simple harmonic boundary condition.


1992 ◽  
Vol 68 (13) ◽  
pp. 2027-2030 ◽  
Author(s):  
Jean-Christophe Toussaint ◽  
Jean-Marc Debierre ◽  
Loïc Turban

Sign in / Sign up

Export Citation Format

Share Document