Suspended Load Transport of Sediment Mixtures

1986 ◽  
Vol 112 (11) ◽  
pp. 1019-1034 ◽  
Author(s):  
Belle R. Samaga ◽  
Kittur G. Ranga Raju ◽  
Ramchandra J. Garde
2013 ◽  
Vol 14 (3) ◽  
pp. 362-370

Systematic measurements of sediment transport rates and water discharge were conducted in the Nestos River (Greece), at a place located between the outlet of Nestos River basin and the river delta. This basin area is about 838 km2 and lies downstream of the Platanovrysi Dam. Separate measurements of bed load transport and suspended load transport were performed at certain cross sections of the Nestos River. In this study, relationships between sediment transport rates and stream discharge for the Nestos River are presented. A nonlinear regression curve (4th degree polynomial curve; r2 equals 0.62) between bed load transport rates and stream discharge, on the basis of 63 measurements, was developed. In addition, a nonlinear regression curve (5th degree polynomial curve; r2 equals 0.95) between suspended load transport rates and stream discharge, on the basis of 65 measurements, was developed. The relatively high r2 values indicate that both bed load transport rates and, especially, suspended load transport rates can be predicted as a function of the stream discharge in the Nestos River. However, the reliability of the regression equations would have been higher if more measured data were available.


2021 ◽  
Vol 2 (1) ◽  
pp. 1-7
Author(s):  
Ramadhan Hidayat Putra ◽  
Amad Syarif Syukri ◽  
Catrin Sudarjat ◽  
Vickky Anggara Ilham

Research on Aepodu Weir Sediment Transport Analysis in South Konawe District, based on observations in the field, Aepodu Weir hasa sediment buildup that has now exceeded the height of the weirlight house. The purpose of the study was to analyze the magnitudeof Aepodu river flow and to analyze the amount of sedimenttransport that occurred in the Aepodu dam. The method used todetermine the amount of bed load transport uses stchoklitscht, whilefor transporting suspended load using forcheimer.The results of the analysis of the average flow of the Aepodu riverwere 3,604 m3/ second. Sediment transport that occurs in Aepoduweir is Bedload transport (Qb) of 291625.771 tons / year, andsuspended load transport (Qs) of 16972,423 tons / year, so that thetotal sediment transport (QT) is 308598,194 tons / year.


Author(s):  
Hongwei Fang ◽  
Lei Huang ◽  
Huiming Zhao ◽  
Wei Cheng ◽  
Yishan Chen ◽  
...  

Author(s):  
A. D. Stewart

ABSTRACTMass balance equations are derived which link the ratios Ts/ (suspended load/dissolved load from chemical weathering) and Tb/Ts (bed load/suspended load), with any two geochemical components present in the source rock and the alluvial system. If the dissolved load is unknown the ratios can be estimated from the relatively insoluble silica and alumina. The ratio Ts/, which for large river basins depends on climate and relief, can thus potentially be determined from ancient alluvial sequences.The equations help define the source composition of a group of 13 modern rivers for which Ts, and alluvial geochemistry are known. These rivers together drain 27% of the continental surface. For a source area with the average continental sandstone to shale ratio of 0·6 the observed average value of Ts/ is obtained when limestone, sandstone and shale are present in the proportions 6·7:21·6:35·7. The figure of 64% sediment in the source area is very similar to the 66% determined by Blatt and Jones (1975) from geological maps of the continents. The equations also show that average bed load transport rate into these 13 basins is about 27% of total transport, and into the Amazon basin about 37%. Bed load transport rates out of the basins, into the sea, are relatively very small.


1984 ◽  
Vol 41 (4) ◽  
pp. 567-578 ◽  
Author(s):  
R. E. Hecky ◽  
G. K. McCullough

Shoreline erosion added an annual average of 4 × 106 t of mineral sediment per year to Southern Indian Lake (postimpoundment area, 2391 km2) during the first 3 yr of impoundment. This erosion increased sedimentary input to the lake by a factor of 20. The lake retained 90% of this eroded material within its basin, and 80–90% of the retained material was deposited nearshore. Despite the production of extremely fine constituent particle sizes, eroding shorelines generated predominantly large clay aggregates, initially transported offshore as bed load. During bed load transport, abrasion of clay aggregates produced fine particles that became suspended. Over 80% of the suspended load is lost to outflows from the lake because the suspended load is primarily fine silt and clay-sized particles, most of which do not settle even under winter ice cover. The extensive nearshore clay aggregate deposits are temporary, and net deposition in these areas will change to net erosion when input of sediment from eroding shorelines ceases. The effects of shoreline erosion on the lake's sediment regime will persist for decades.


Sign in / Sign up

Export Citation Format

Share Document