clay aggregates
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 27)

H-INDEX

25
(FIVE YEARS 2)

Author(s):  
Omnia Saad ◽  
◽  
Khaled S. Ragab ◽  
Omar Elnawawy ◽  
Yousef R. Alharbi ◽  
...  

Using of Lightweight concrete (LWC) amounts to a lower cost and a better thermal performance due to its unique properties and light density. The main disadvantage in using lightweight concrete is that its mechanical properties are relatively poor. An effective method to improve the mechanical properties of lightweight concrete is using a dosage of nano-silica in the concrete mix. The gained enhancement of mechanical properties promotes a more serious discussion of structural applications of lightweight concrete. There exists an optimum dosage of nano-silica by which the mechanical properties enhancement is maximized. Increasing the nano-silica content beyond the optimum dosage degrades the mechanical properties. However, a fixed optimum dosage is not agreed upon in literature. This paper investigates the optimum dosage of NS to enhance the mechanical properties and microstructure of a lightweight concrete made with lightweight expanded clay aggregates (LECA). The results concluded that a dosage of 0.75% of nano-silica is optimum for the studied lightweight concrete mixes.


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1138
Author(s):  
Edgar Galicia-Andrés ◽  
Chris Oostenbrink ◽  
Martin H. Gerzabek ◽  
Daniel Tunega

Soil organic matter (SOM) and various inorganic minerals represent key components of soils. During pedogenesis and due to biological activity these species interact, having a crucial impact on the formation of an aggregated soil structure with a hierarchical arrangement from nano to macro scale. In this process, the formation of organo–mineral microaggregates represents a dominant factor affecting soil functions and properties. This study focuses on the interactions between humic substances (HSs) and the mineral kaolinite as typical representatives of SOM and soil minerals. By performing classical molecular dynamics (MD) simulations on models of HSs and kaolinite, we demonstrate how two dominant but chemically different kaolinite surfaces affect the stability of HSs microaggregates. By analyzing volumetric, structural, and energetic properties of SOM–kaolinite models, we explain possible mechanisms of the formation of stable SOM–clay aggregates and show how a polarized environment affects the electrostatic interactions, stabilizing the microscopic structure of SOM–mineral aggregates. Our results showed that when stable aggregates of HSs are confined in kaolinite nanopores, their interactions with kaolinite surfaces disintegrate them into smaller subaggregates. These subaggregates are adsorbed more strongly on the polar aluminol surface of kaolinite compared to less the active hydrophobic siloxane surface.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110121
Author(s):  
Gina Odochi Ihekweme ◽  
Ifenyinwa Ijeoma Obianyo ◽  
Kingsley Ikechukwu Orisekeh ◽  
Godwin Mong Kalu-Uka ◽  
Iheoma C Nwuzor ◽  
...  

Plasticity is an essential property of clay that determines its suitability for water filtration. There are no published works on the plastic behavior of clays from the study locations. The plastic behavior of seven Nigerian clays was examined using plasticity indices and compressive stress parameters in relation to chemical compositions and moisture content. The objective is to determine plastic behavior of some Nigerian clays and their suitability in production of Expanded Clay Aggregates (ECA) for water filters. Compressive stresses and deformation parameters were determined experimentally and compared theoretically. Atterberg limits (D 4318) were used to determine the plasticity indices. Chemical compositions of the samples were examined with XRF and correlated with plasticity and mineral contents of the clays. The clays are aluminosilicates with SiO2/Al2O3 ratio of 1.61 to 3.03 and plastic indices of 8 to 49. Low plastic indices (8–11) and low compressive stresses parameters were observed for kaolinite clays (0.002 MPa) due to their low affinity for water while zeolite rich clays showed high plastic indices (46 and 49) for Obowo and Minna and sharp difference in their compressive stresses parameters (0.15 and 0.03 MPa) at optimum moisture contents of 57% and 53%, respectively. Despite varying moisture content, chemical and mineral compositions, all curves showed similar trends apart from kaolinites at 40% moisture content. Relationships exist among microstructural properties, chemical composition, moisture content, compressive strength, and plasticity indices of the clays. The plastic behaviors show they are suitable for development of ECA for water filters.


2021 ◽  
Author(s):  
Gema De la Morena ◽  
Vicente Navarro ◽  
Laura Asensio ◽  
Domenico Gallipoli

AbstractThis paper presents a constitutive model that predicts the water retention behaviour of compacted clays with evolving bimodal pore size distributions. In line with previous research, the model differentiates between the water present inside the saturated pores of the clay aggregates (the microstructure) and the water present inside the pores between clay aggregates (the macrostructure). A new formulation is then introduced to account for the effect of the macrostructural porosity changes on the retention behaviour of the soil, which results in a consistent evolution of the air-entry value of suction with volumetric deformations. Data from wetting tests on three different active clays (i.e. MX-80 bentonite, FEBEX bentonite, and Boom clay), subjected to distinct mechanical restraints, were used to formulate, calibrate, and validate the proposed model. Results from free swelling tests were also modelled by using both the proposed double porosity model and a published single porosity model, which confirmed the improvement in the predictions of degree of saturation by the present approach. The proposed retention model might be applied, for example, to the simulation of the hydromechanical behaviour of engineered bentonite barriers in underground nuclear waste repositories, where compacted active clays are subjected to changes of both suction and porosity structure under restrained volume conditions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Judy Q. Yang ◽  
Xinning Zhang ◽  
Ian C. Bourg ◽  
Howard A. Stone

AbstractSoil absorbs about 20% of anthropogenic carbon emissions annually, and clay is one of the key carbon-capture materials. Although sorption to clay is widely assumed to strongly retard the microbial decomposition of soil organic matter, enhanced degradation of clay-associated organic carbon has been observed under certain conditions. The conditions in which clay influences microbial decomposition remain uncertain because the mechanisms of clay-organic carbon interactions are not fully understood. Here we reveal the spatiotemporal dynamics of carbon sorption and release within model clay aggregates and the role of enzymatic decomposition by directly imaging a transparent smectite clay on a microfluidic chip. We demonstrate that clay-carbon protection is due to the quasi-irreversible sorption of high molecular-weight sugars within clay aggregates and the exclusion of bacteria from these aggregates. We show that this physically-protected carbon can be enzymatically broken down into fragments that are released into solution. Further, we suggest improvements relevant to soil carbon models.


2021 ◽  
Vol 8 (1) ◽  
pp. 1883232
Author(s):  
Gina O. Ihekweme ◽  
Ifeyinwa I. Obianyo ◽  
Esther N. Anosike-Francis ◽  
Victoria N. Anyakora ◽  
O. S. Odusanya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document