Effect of Controlled Drainage and Vegetative Buffers on Drainage Water Quality from Wastewater Irrigated Fields

2006 ◽  
Vol 132 (2) ◽  
pp. 159-170 ◽  
Author(s):  
Z. Jia ◽  
R. O. Evans ◽  
J. T. Smith
Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 308
Author(s):  
Kristen Almen ◽  
Xinhua Jia ◽  
Thomas DeSutter ◽  
Thomas Scherer ◽  
Minglian Lin

The potential impact of controlled drainage (CD), which limits drainage outflow, and subirrigation (SI), which provides supplemental water through drain tile, on surface water quality are not well known in the Red River Valley (RRV). In this study, water samples were collected and analyzed for chemical concentrations from a tile-drained field that also has controlled drainage and subirrigation modes in the RRV of southeastern North Dakota from 2012–2018. A decreasing trend in overall nutrient load loss was observed because of reduced drainage outflow, though some chemical concentrations were found to be above the recommended surface water quality standards in this region. For example, sulfate was recommended to be below 750 mg/L but was reported at a mean value of 1971 mg/L during spring free drainage. The chemical composition of the subirrigation water was shown to have an impact on drainage water and the soil, specifically on salinity-related parameters, and the impact varied between years. This variation largely depended on the amount of subirrigation applied, soil moisture, and soil properties. Overall, the results of this study show the benefits of controlled drainage on nutrient loss reduction from agricultural fields.


2011 ◽  
Vol 21 (2) ◽  
pp. 176-180 ◽  
Author(s):  
P. Chris Wilson ◽  
Joseph P. Albano

Nitrate-nitrogen (N) losses in surface drainage and runoff water from ornamental plant production areas can be considerable. In N-limited watersheds, discharge of N from production areas can have negative impacts on nontarget aquatic systems. This study monitored nitrate-N concentrations in production area drainage water originating from a foliage plant production area. Concentrations in drainage water were monitored during the transition from 100% reliance on fertigation using urea and nitrate-based soluble formulations (SF) to a nitrate-based controlled-release formulation (CRF). During the SF use period, nitrate-N concentrations ranged from 0.5 to 322.0 mg·L−1 with a median concentration of 31.2 mg·L−1. Conversely, nitrate-N concentrations during the controlled-release fertilization program ranged from 0 to 147.9 mg·L−1 with a median concentration of 0.9 mg·L−1. This project demonstrates that nitrate-N concentrations in drainage water during the CRF program were reduced by 94% to 97% at the 10th through 95th percentiles relative to the SF fertilization program. Nitrate-N concentrations in drainage water from foliage plant production areas can be reduced by using CRF fertilizer formulations relative to SF formulations/fertigation. Similar results should be expected for other similar containerized crops. Managers located within N-limited watersheds facing N water quality regulations should consider the use of CRF fertilizer formulations as a potential tool (in addition to appropriate application rates and irrigation management) for reducing production impacts on water quality.


2002 ◽  
Vol 45 (5) ◽  
Author(s):  
P. S. Miller ◽  
J. K. Mitchell ◽  
R. A. Cooke ◽  
B. A. Engel

2010 ◽  
Author(s):  
Stacey E Feset ◽  
Jeffrey S Strock ◽  
Gary R Sands ◽  
Adam S Birr

2007 ◽  
Vol 56 (S1) ◽  
pp. S161-S177 ◽  
Author(s):  
Willem F. Vlotman ◽  
Tony Wong ◽  
Bart Schultz

2017 ◽  
Vol 60 (3) ◽  
pp. 813-821 ◽  
Author(s):  
Samaneh Saadat ◽  
Laura Bowling ◽  
Jane Frankenberger ◽  
Kyle Brooks

Abstract. Controlled drainage is a best management practice that decreases nitrate loads from subsurface drainage, but questions remain about optimal operation strategies. One unanswered question is whether the outlet should be lowered prior to or directly after a rainfall event to reduce the amount of time that the water table is at a level that would be detrimental to either trafficability or crop yield. The objective of this study was to determine how much controlled drainage lengthens the time needed for the water table to fall after a rainfall event, to inform possible improvement in the management of controlled drainage systems. This objective was addressed using water table recession rates from two pairs of controlled and free-draining fields located at the Davis Purdue Agricultural Center in Indiana over a period of nine years (2006-2014). At each pair, comparison of mean recession rates from the two fields indicated that controlled drainage reduced recession rate. The significance of the relationship between paired observations and the effect of controlled drainage was determined by a paired watershed approach using analysis of variance (ANOVA) and covariance (ANCOVA). Raising the outlet of the subsurface drainage system decreased the mean rate of water table recession by 29% to 62%, increasing the time needed for the water table level to fall from the surface to 30 and 60 cm depths by approximately 12 to 26 h and 24 to 53 h, respectively. Based on these results, it can be concluded that lowering the outlet before storm events would reduce the amount of time that the water table is at a detrimental level for either crop growth or trafficability. However, the trade-off between costs and benefits of active management depends on the sensitivity of the crop and probability of a severe storm. Keywords: Drainage water management, Managed drainage, Paired watershed approach, Tile drainage, Water table drawdown.


Sign in / Sign up

Export Citation Format

Share Document