paired watershed
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 5)

H-INDEX

12
(FIVE YEARS 0)

2022 ◽  
Vol 302 ◽  
pp. 114053
Author(s):  
Ji Yeow Law ◽  
Leigh Ann Long ◽  
Amy Kaleita ◽  
Matthew Helmers ◽  
Conrad Brendel ◽  
...  

2021 ◽  
Vol 4 ◽  
Author(s):  
Salli F. Dymond ◽  
Paul W. Richardson ◽  
Lynn A. Webb ◽  
Elizabeth T. Keppeler ◽  
Ivan Arismendi ◽  
...  

Forests are integral to sustaining clean water resources and healthy watersheds. It is critical, therefore, that managers fully understand the potential impacts of their actions on myriad ecosystem services provided by forested watersheds. While forest hydrologists have long used paired-watershed experiments to elucidate the complex interactions between forest management and watershed biogeochemical and ecohydrological processes, there is still much to learn from these studies. Here, we present an overview of the process for designing a paired-watershed study using a large harvesting experiment at the Caspar Creek Experimental Watersheds in coastal California as an example. We detail many considerations when designing such an experiment and highlight the wide range of scientific investigations that are part of the larger experiment. Paired watershed studies are a great example of community engaged scholarship and offer the unique opportunity to work with land managers to solve applied problems while simultaneously discovering new fundamental knowledge about how watersheds function.


Soil Systems ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Jessica F. Sherman ◽  
Eric O. Young ◽  
William E. Jokela ◽  
Michael D. Casler ◽  
Wayne K. Coblentz ◽  
...  

Best management practices (BMPs) can mitigate erosion and nutrient runoff. We evaluated runoff losses for silage corn management systems using paired watershed fields in central Wisconsin. A two-year calibration period of fall-applied liquid dairy manure incorporated with chisel plow tillage (FMT) was followed by a three and a half-year treatment period. During the treatment period FMT was continued on one field, and three different systems on the others: (a) fall-applied manure and chisel tillage plus a vegetative buffer strip (BFMT); (b) a fall rye cover crop with spring manure application and chisel tillage (RSMT), both BMPs; a common system (c) fall manure application with spring chisel tillage (FMST). Year-round runoff monitoring included flow, suspended sediment (SS), total phosphorus (TP), dissolved reactive phosphorus (DRP), ammonium (NH4+-N), nitrate, and total nitrogen (TN). Results showed BFMT reduced runoff SS, TP, and TN concentration and load compared to FMT. The RSMT system reduced concentrations of SS, TP, and TN, but not load because of increased runoff. The FMST practice increased TP, DRP, and NH4+-N loads by 39, 376, and 197%, respectively. While BMPs showed mitigation potential for SS, TN, and TP, none controlled DRP, suggesting additional practices may be needed in manured corn silage fields with high runoff potential.


2019 ◽  
Vol 10 (19) ◽  
pp. 204-210
Author(s):  
Fatemeh Ghotbaldin ◽  
Mohammad Nohtani ◽  
Morteza Dehghani ◽  
◽  
◽  
...  

2017 ◽  
Vol 60 (3) ◽  
pp. 813-821 ◽  
Author(s):  
Samaneh Saadat ◽  
Laura Bowling ◽  
Jane Frankenberger ◽  
Kyle Brooks

Abstract. Controlled drainage is a best management practice that decreases nitrate loads from subsurface drainage, but questions remain about optimal operation strategies. One unanswered question is whether the outlet should be lowered prior to or directly after a rainfall event to reduce the amount of time that the water table is at a level that would be detrimental to either trafficability or crop yield. The objective of this study was to determine how much controlled drainage lengthens the time needed for the water table to fall after a rainfall event, to inform possible improvement in the management of controlled drainage systems. This objective was addressed using water table recession rates from two pairs of controlled and free-draining fields located at the Davis Purdue Agricultural Center in Indiana over a period of nine years (2006-2014). At each pair, comparison of mean recession rates from the two fields indicated that controlled drainage reduced recession rate. The significance of the relationship between paired observations and the effect of controlled drainage was determined by a paired watershed approach using analysis of variance (ANOVA) and covariance (ANCOVA). Raising the outlet of the subsurface drainage system decreased the mean rate of water table recession by 29% to 62%, increasing the time needed for the water table level to fall from the surface to 30 and 60 cm depths by approximately 12 to 26 h and 24 to 53 h, respectively. Based on these results, it can be concluded that lowering the outlet before storm events would reduce the amount of time that the water table is at a detrimental level for either crop growth or trafficability. However, the trade-off between costs and benefits of active management depends on the sensitivity of the crop and probability of a severe storm. Keywords: Drainage water management, Managed drainage, Paired watershed approach, Tile drainage, Water table drawdown.


2017 ◽  
Vol 60 (5) ◽  
pp. 1607-1620 ◽  
Author(s):  
Augustine Muwamba ◽  
Devendra M. Amatya ◽  
George M. Chescheir ◽  
Jami E. Nettles ◽  
Timothy Appelboom ◽  
...  

Abstract. Interplanting a cellulosic bioenergy crop (switchgrass, L.) between loblolly pine ( L.) rows could potentially provide a sustainable source of bio-feedstock without competing for land currently in food production. The objectives of this study were to: (1) quantify the concentrations and loads of drainage water nitrogen (N) and phosphorus (phosphate) associated with establishment and growth of switchgrass treatments and compare them with those for a mid-rotation pine forest (control), and (2) quantify the treatment effects on drainage water N and phosphate (IC) and switchgrass only (SG). Thinned mid-rotation loblolly pine with natural understory (MP) was used as the control. Pretreatment calibration equations for nutrients were obtained using a paired watershed approach and bootstrap geometric regression with 2007-2008 data, when pine on all sites had reached canopy closure. Treatment effects were calculated as the difference between expected values from the pretreatment relationship and measured data for the treatment period. Precipitation, outflow, and N and phosphate concentrations in the outflow were measured during calibration (Jan. 2007 to Dec. 2008), site preparation for switchgrass establishment (Nov. 2009 to Mar. 2012), and switchgrass growth (Apr. 2012 to Apr. 2014). Mean NO3-N concentrations and loads were significantly (a = 0.05) greater for SG than for IC during the switchgrass growth period. Average treatment concentrations with standard errors and total load effects during switchgrass growth for NO3-N followed the trends SG (-0.002 ±0.01 mg L-1) > IC (-0.12 ±0.04 mg L-1) and SG (0.75kg ha-1) > IC (0.23kg ha-1), respectively. For phosphate average concentrations and loads, the treatment effects during switchgrass growth followed the trends SG (-0.004 ± mg L-1) >IC ( -0.02 ± mg L-1) and IC (-0.43 kg ha-1) > SG (-0.70 kg ha-1), respectively. Average concentration effects for NO3-N and phosphate and total load effects for phosphate significantly (a = 0.05) decreased for IC compared to the MP control. These results suggest that the intercropping treatment (IC) with loblolly pine and switchgrass improved water quality by reducing NO3-N and phosphate concentrations and phosphate loads. Keywords: Bioenergy crop, Bootstrap geometric regression, Loblolly pine, Nutrients, Paired watershed.


2016 ◽  
Vol 73 (12) ◽  
pp. 1898-1913 ◽  
Author(s):  
Douglas S. Bateman ◽  
Matthew R. Sloat ◽  
Robert E. Gresswell ◽  
Aaron M. Berger ◽  
David P. Hockman-Wert ◽  
...  

To investigate effects of headwater logging on downstream coastal cutthroat trout (Oncorhynchus clarkii clarkii) populations, we monitored stream habitat and biotic indicators including biomass, abundance, growth, movement, and survival over 8 years using a paired-watershed approach. Reference and logged catchments were located on private industrial forestland on ∼60-year harvest rotation. Five clearcuts (14% of the logged catchment area) were adjacent to fishless portions of the headwater streams, and contemporary regulations did not require riparian forest buffers in the treatment catchment. Logging did not have significant negative effects on downstream coastal cutthroat trout populations for the duration of the sample period. Indeed, the only statistically significant response of fish populations following logging in fishless headwaters was an increase in late-summer biomass (g·m−2) of age-1+ coastal cutthroat trout in tributaries. Ultimately, the ability to make broad generalizations concerning effects of timber harvest is difficult because response to disturbance (anthropogenically influenced or not) in aquatic systems is complex and context-dependent, but our findings provide one example of environmentally compatible commercial logging in a regenerated forest setting.


Sign in / Sign up

Export Citation Format

Share Document