Modeling of the Thermomechanical Fatigue Behavior of Fiber-Reinforced Ceramic-Matrix Composites Subjected to Different Phase Angles

2018 ◽  
Vol 31 (4) ◽  
pp. 04018042
Author(s):  
Li Longbiao
Author(s):  
Li Longbiao

In this paper, comparisons of thermomechanical fatigue hysteresis loops of fiber-reinforced ceramic-matrix composites (CMCs) subjected to different phase angles of θ = 0, π/3, π/2, and π have been investigated. The shape, location, and area of fatigue hysteresis loops are affected by the phase angle under the thermomechanical cyclic loading. The effects of fiber volume fraction, fatigue peak stress, matrix crack spacing, interface frictional coefficient, and interface debonded energy on the thermomechanical fatigue hysteresis loops and fiber/matrix interface slip of different phase angles are discussed. The fatigue hysteresis loops of cross-ply CMCs under the phase angles of θ = 0 and π are predicted for different fatigue peak stresses and cycle numbers.


2018 ◽  
Vol 35 (02) ◽  
pp. 209-223
Author(s):  
L. B. Li

ABSTRACTIn this paper, the comparisons of thermomechanical fatigue behavior of C/SiC and SiC/SiC fiber-reinforced ceramic-matrix composites (CMCs) subjected to different phase angles of θ = 0, π/3, π/2 and π have been investigated. The relationships between the fatigue damage mechanisms, phase angle, fatigue hysteresis dissipated energy, fatigue hysteresis modulus and fatigue peak strain, fiber/matrix interface debonding and sliding have been established. The differences between C/SiC and SiC/SiC composites under thermomechanical fatigue loading with different phase angles have been analyzed. The damage accumulation of 2.5D C/SiC and 2D SiC/SiC composites under thermomechanical fatigue loading have been predicted. With increasing of the phase angle, the fatigue hysteresis dissipated energy, fatigue peak strain and interface debonded length decrease for the SiC/SiC composite; however, for the C/SiC composite, the fatigue hysteresis dissipated energy, fatigue peak strain and the interface debonded length increase at the same cycle number.


2021 ◽  
Vol 5 (7) ◽  
pp. 187
Author(s):  
Longbiao Li

In this paper, micromechanical constitutive models are developed to predict the tensile and fatigue behavior of fiber-reinforced ceramic-matrix composites (CMCs) considering matrix fragmentation and closure. Damage models of matrix fragmentation, interface debonding, and fiber’s failure are considered in the micromechanical analysis of tensile response, and the matrix fragmentation closure, interface debonding and repeated sliding are considered in the hysteresis response. Relationships between the matrix fragmentation and closure, tensile and fatigue response, and interface debonding and fiber’s failure are established. Experimental matrix fragmentation density, tensile curves, and fatigue hysteresis loops of mini, unidirectional, cross-ply, and 2D plain-woven SiC/SiC composites are predicted using the developed constitutive models. Matrix fragmentation density changes with increasing or decreasing applied stress, which affects the nonlinear strain of SiC/SiC composite under tensile loading, and the interface debonding and sliding range of SiC/SiC composite under fatigue loading.


Sign in / Sign up

Export Citation Format

Share Document