Rock-Cutting Mechanics Model and Its Application Based on Slip-Line Theory

2018 ◽  
Vol 18 (5) ◽  
pp. 04018025 ◽  
Author(s):  
Qi Wang ◽  
Song Gao ◽  
Bei Jiang ◽  
Shucai Li ◽  
Manchao He ◽  
...  
2008 ◽  
pp. 955-959
Author(s):  
B Li ◽  
M Lin ◽  
J Ma ◽  
H Zeng ◽  
D Ma ◽  
...  

Author(s):  
Thomasina V. Ball ◽  
Neil J. Balmforth ◽  
Ian J. Hewitt

We study the indentation of a rigid object into a layer of a cohesive or non-cohesive plastic material. Existing approaches to this problem using slip-line theory assume that the penetration depth is relatively small, employing perturbation theory about a flat surface. Here, we use two alternative approaches to account for large penetration depths, and for the consequent spreading and uplift of the surrounding material. For a viscoplastic fluid, which reduces to an ideal plastic under the limit of vanishing viscosity, we adopt a viscoplastic version of lubrication theory. For a Mohr–Coulomb material, we adopt an extension of slip-line theory between two parallel plates to account for arbitrary indenter shapes. We compare the theoretical predictions of penetration and spreading with experiments in which a flat plate, circular cylinder or sphere are indented into layers of Carbopol or glass spheres with successively higher loads. We find reasonable agreement between theory and experiment, though with some discrepancies that are discussed. There is a clear layer-depth dependence of the indentation and uplift for the viscoplastic material. For a cylinder indented into a Mohr–Coulomb material, there is a much weaker dependence on layer depth.


1970 ◽  
Vol 9 (56) ◽  
pp. 169-193 ◽  
Author(s):  
I. F. Collins

The deformation and state of stress at the confluence of two glacier streams are analysed using the techniques of slip-line theory. The valley walls are taken to be vertical parallel planes and the deformation is supposed independent of depth. The mechanical behavior of ice is modeled by the ideal rigid/perfectly plastic material.Detailed solutions are presented for the deformation at the confluence of one or more tributaries with a main stream and of two main streams. Attention is concentrated on predicting the number, position and magnitude of the bands of intense shear which emanate from some of the junction corners. The predictions of this idealized theory are compared with field data from a confluence on the Kaskawulsh Glacier, Yukon Territory, Canada.


Author(s):  
Demeng Che ◽  
Peidong Han ◽  
Ping Guo ◽  
Kornel Ehmann

In Part I of this paper, the issues related to temperature, stress and force were reviewed and parallels were drawn between both metal machining and rock cutting. Part II discusses the issues more directly related to polycrystalline diamond compact (PDC) bit performance and rock mechanics. However, relevant issues in various metal cutting processes will continue to be presented to clarify the gaps and similarities between these two classes of processes.


2021 ◽  
Author(s):  
Fei Su ◽  
Chunjie Li ◽  
Guojun Dong ◽  
Lei Zheng ◽  
Bing Chen

Abstract Carbon fiber-reinforced plastic (CFRP) is used widely in aerospace. The cutting mechanism of CFRP is markedly different from that of metals due to anisotropic and non-homogeneous material structure. The cutting mechanisms are highly dependent on the fiber orientation. The quality of the machined surface can be affected by the fiber fracture models. In this paper, based on the elastic foundation beam theory and the Hertzian contact theory, the cutting mechanics are established. And the cutting model is simulated by the three-dimensional micro-scale numerical model. Then, the continuous varying cutting mechanism and the sub-damage are deeply studied in detail by combining the cutting mechanics model and the simulation model. The results indicate that the fiber orientation θ=80° and θ=150° is the transition critical point of the fracture form. When θ=0°, the fiber failure mode is buckling-dominated. When 0°<θ<80° and 150°<θ<180°, the fiber failure mode is dominated by contact fracture. When 80°<θ<150°, the fiber failure mode is bending-dominated. The cutting mechanics model and finite element model can effectively reflect the evolution law of CFRP machined surface.


Sign in / Sign up

Export Citation Format

Share Document