drilling force
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 36)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Tongtong Jin ◽  
Chuliang Yan ◽  
Jinyan Guo ◽  
Chuanhai Chen ◽  
Dong Zhu

Abstract In order to overcome the problem that the existing methods of compiling load spectrum of spindle or machine tool mainly aim at the cutting force spectrum, torque spectrum and speed spectrum respectively, which ignore the connection between each spectrum, in this paper, a method for compiling drilling load spectrum of motorized spindle in CNC machine tool based on the characteristics of drilling force is proposed. Firstly, drilling tests under different processing technologies are carried out to measure its load, and the correction coefficient in the empirical formula of drilling force is obtained through fitting the measured drilling force, which makes the calculation of the axial force and torque more reasonable. Secondly, compared with the extended factor method, the transcendental probability method is optimized to solve the ultimate load of the axial force. Then, after setting the axial force as the main load of drilling, an eight-stage load spectrum for the main load is compiled. Finally, according to the relationship between the axial force and other loads, the eight-stage loading spectrum is transformed into a multi-dimensional drilling load spectrum.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2926
Author(s):  
Alexey Vasiliev ◽  
Sergey Lupuleac ◽  
Julia Shinder

This paper is devoted to the development of a numerical approach that allows quick detection of the conditions favorable for the beginning of noticeable vibrations during drilling. The main novelty of the proposed approach lies in taking into account the deviations of the assembled compliant parts during non-stationary contact analysis by means of variation simulation. The approaches to stationary analysis of assembly quality are expanded and generalized for modeling such non-stationary effects as vibration and resonance. The numerical procedure is based on modeling the stress–strain state of the assembled structures by solving the corresponding transient contact problem. The use of Guyan reduction, the node-to-node contact model and the application of the generalized α method allow the reformulation of the contact problem in terms of a series of quadratic programming problems. The algorithm is thoroughly tested and validated with commercial software. The efficiency of the developed numerical procedure is illustrated by analysis of the test joints of two aircraft panels. The unsteady process of drilling the panels with periodic drilling force was simulated. The influence of deviations in the shape of the parts on the non-stationary interlayer gap was modeled by setting different initial gaps between parts. It is shown that the oscillation amplitudes of the interlayer gap depend on the initial gaps and do not correlate with the mean value of the stationary residual gap. Thus, non-stationary analysis provides new information about the quality of the assembly process, and it should be applied if the assembly process includes periodic impact on the assembled parts.


Measurement ◽  
2021 ◽  
pp. 110126
Author(s):  
Krzysztof Ciecieląg ◽  
Agnieszka Skoczylas ◽  
Jakub Matuszak ◽  
Kazimierz Zaleski ◽  
Krzysztof Kęcik

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4820
Author(s):  
Salman Pervaiz ◽  
Wael A. Samad

In drilling operations, cutting forces are one of the major machinability indicators that contribute significantly towards the deviations in workpiece form and surface tolerances. The ability to predict and model forces in such operations is also essential as the cutting forces play a key role in the induced vibrations and wear on the cutting tool. More specifically, Inconel 718—a nickel-based super alloy that is primarily used in the construction of jet engine turbines, nuclear reactors, submarines and steam power plants—is the workpiece material used in the work presented here. In this study, both mechanistic and finite element models were developed. The finite element model uses the power law that has the ability to incorporate strain hardening, strain rate sensitivity as well as thermal softening phenomena in the workpiece materials. The model was validated by comparing it against an analytical mechanistic model that considers the three drilling stages associated with the drilling operation on a workpiece containing a pilot hole. Both analytical and FE models were compared and the results were found to be in good agreement at different cutting speeds and feed rates. Comparing the average forces of stage II and stage III of the two approaches revealed a discrepancy of 11% and 7% at most. This study can be utilized in various virtual drilling scenarios to investigate the influence of different process and geometric parameters.


2021 ◽  
pp. 2150082
Author(s):  
JOGENDRA KUMAR ◽  
RAJESH KUMAR VERMA

This article describes new control criteria and robust optimization methodology to balance drilling parameters and machining characteristics. Experimentation was performed according to response surface methodology (RSM) using a TiAlN coated SiC tool. The full drilling force signal and cutting parameters tested are categorized into five stages, indicating the drilling tool-workpiece interactions’ different statuses. Principal component analysis (PCA) assigns real response priority weight during the aggregation of conflicting characteristics. The hybrid module of combined compromise solution and PCA (CoCoSo–PCA) is used to decide the optimal parametric setting. It efficiently undertakes a trade-off between minimal thrust ([Formula: see text][Formula: see text]N), torque ([Formula: see text][Formula: see text]Nm) surface roughness ([Formula: see text]m). A regression model between input parameters and output function was established using RSM quadratic model. The validation experiment shows significant improvement, and the proposed module can be recommended for quality-productivity characteristics control.


Author(s):  
Edina Lempel ◽  
József Szalma

Abstract Objectives Decreasing aerosol leaks are of great interest, especially in the recent era of COVID-19. The aim was to investigate intrapulpal heat development, coolant spray patterns, and the preparation efficiency of speed-increasing contra-angle handpieces with the spray air on (mist) or off (water jet) settings during restorative cavity preparations. Methods Standard-sized cavities were prepared in 80 extracted intact human molar teeth using diamond cylindrical drills with a 1:5 speed-increasing contra-angle handpiece. A custom-made device maintained the standardized lateral drilling force (3 N) and predetermined depth. Temperatures were measured using intrapulpal thermocouple probes. The four experimental groups were as follows: mist cooling mode at 15 mL/min (AIR15), water jet cooling mode at 15 mL/min (JET15), mist cooling mode at 30 mL/min (AIR30), and water jet cooling mode at 30 mL/min (JET30). The coolant spray pattern was captured using macro-photo imaging. Results The JET15 group had the highest increase in temperature (ΔT = 6.02 °C), while JET30 (ΔT = 2.24 °C; p < 0.001), AIR15 (ΔT = 3.34 °C; p = 0.042), and AIR30 (ΔT = 2.95 °C; p = 0.003) had significantly lower increases in temperature. Fine mist aerosol was formed in the AIR15 and AIR30 preparations but not in the JET15 and JET30 preparations (p < 0.001). The irrigation mode had no influence on the preparation time (p = 0.672). Conclusions Water jet irrigation using coolant at 30 mL/min appeared to be the optimal mode. Considering the safe intrapulpal temperatures and the absence of fine mist aerosols, this mode can be recommended for restorative cavity preparations. Clinical significance To increase infection control in dental practices, the water jet irrigation mode of speed-increasing handpieces with coolant flow rates of 30 mL/min should be considered for restorative cavity preparations.


Author(s):  
Vyktoryia Burdeina ◽  
Hanna Hrinchenko ◽  
Svitlana Artiukh ◽  
Andrii Trishch

The dimensional analysis of the initial parameters of the coordinated dimensions of the holes is presented. Issues related to the assessment of the accuracy of the location of the surfaces of deep holes are considered. The influence of various technological factors on the magnitude of scattering of coordinated dimensions is studied. Experimental studies using experimental design methodology, which was used for sample preparations 45 steel, cast iron SCH15, aluminum alloys. Factors such as the cutting angle, the hardness of the workpiece, the cutting force and their effect on the diameter of the impression and its depth were studied. As a result of the experiments, a slight effect of the drilling force on the diameter and depth of the impression was found. However, it was found that the angle of the core leads to a directly proportional increase in the diameter of the imprint and inversely affects its depth. The hardness of the material has a more significant effect on the diameter of the imprint than on its depth. The total influence of controlled factors significantly affects the diameter of the imprint. Minimum core drilling angles are proposed for some materials. A mathematical model of the accuracy of machining coordinated holes is proposed on the basis of estimating the coefficients of the regression equation and finding the required mathematical models of the scattering fields of dimensions and deviations. As factors that vary during the drilling of coordinated holes, were taken: the length of the conductor sleeve, the departure of the tool, the hardness of the workpiece, the diameter of the tool. It is found that with increasing tool diameter and guide sleeve length decreases the amount of dimensional scattering from the base and positional deviations, and increasing tool departure and improving the physical and mechanical properties of the workpiece increase the size of the size scattering field from the base and positional deviation. An additional factor was introduced: the gap in the combination between the cutting tool and the conductor sleeve and obtained mathematical dependences of the influence of factors on dimensional accuracy when machining deep holes with the direction of the cutting tool. It is shown that the introduction of an additional factor - the gap, did not change the essence of the process of errors on small aggregate machines, and the change in diameters does not lead to a significant increase in scattering fields.


2021 ◽  
Author(s):  
Sousan Pourgiv ◽  
Nima Jamshidi ◽  
Aminollah Mohammadi ◽  
Alireza Mosavar

Abstract Background: A potential method in drilling of bone is ultrasonic-assisted drilling. In addition, during the drilling of bone, which is common in clinical surgeries, excessive heat generation and drilling force may lead to damages in bone tissue, and thus to failure of implants and fixation screws or delay in healing process. The aim of this study was to appraise efficiency of ultrasonic-assisted drilling in comparison to conventional drilling.Methods: In addition to investigating drilling force and temperature elevation, their effects on arising osteonecrosis and micro-cracks were explored in ultrasonic-assisted and conventional drilling through histopathologic assessment and microscopic imaging. In this regard, three drilling speeds and two drilling feed-rates were considered as drilling variables in the in-vitro experiments. Moreover, numerical modeling gave an insight into temperature distribution during drilling process in the both methods and compared three different vibration amplitudes. Results: Although temperature elevations were lower in the conventional drilling, the ultrasonic-assisted drilling had lesser drilling forces. Furthermore, the latter method had smaller osteonecrosis regions, and did not have micro-cracks in cortical bone and destructions in structure of cancellous bone.Conclusions: The ultrasonic-assisted drilling, which caused lesser damages to the bone tissue in both cortical and cancellous bone, was more comparatively advantageous.


Sign in / Sign up

Export Citation Format

Share Document