Erratum for “Stress-Strain Response and Dilatancy of Sandy Gravel in Triaxial Compression and Plane Strain” by Andrew Strahler, Armin W. Stuedlein, and Pedro W. Arduino

2016 ◽  
Vol 142 (10) ◽  
pp. 08216003 ◽  
Author(s):  
Andrew Strahler ◽  
Armin W. Stuedlein ◽  
Pedro W. Arduino
2019 ◽  
Vol 92 ◽  
pp. 15001
Author(s):  
Alexandros L. Petalas ◽  
Mats Karlsson ◽  
Minna Karstunen

stress-strain response of soft natural clays is characterised by anisotropy, destructuration and rate-dependency. An accurate constitutive description of these materials should take into consideration all of the characteristics above. In this paper, two constitutive models for soft soils, namely the SCLAY1S and Creep-SCLAY1S models are used to simulate the undrained response of two soft natural clays, Gothenburg clay from Sweden and Otaniemi clay from Finland. The SCLAY1S model accounts for the effect of inherent and induced anisotropy and destructuration, while the Creep-SCLAY1S accounts also for the creep and rate effects. The model simulations are compared against triaxial compression and extension tests on anisotropically consolidated samples. The results demonstrate the need to incorporate all features represented in the Creep-SCLAY1S model when modelling structured natural clays.


1965 ◽  
Vol 2 (1) ◽  
pp. 40-52 ◽  
Author(s):  
R L Kondner ◽  
J M Horner

The influence of the first invariant of the effective stress tensor upon the deviatoric response of a cohesive soil is investigated. Triaxial compression tests with effective octahedral normal stress control show the deviatoric stress-strain response to be definitely affected by the value of the effective octahedral stress, [Formula: see text]. The values of [Formula: see text] range from 7.5 psi to 30.0 psi. For a constant value of strain, the deviatoric stress increases with an increase in [Formula: see text]. The ultimate shear strength can be approximated as a linear function of [Formula: see text]. Hyperbolic representation of the stress-strain response provides a convenient method for obtaining a measure of the ultimate shear strength using the response of stress states other than failure. The deviatoric stress-strain response as a function of the effective octahedral stress, [Formula: see text], can be expressed in the normalized form[Formula: see text]where ε is the strain, [Formula: see text] is a measure of the shear strength expressed in terms of [Formula: see text] , and A as well as B are numerical coefficients.


1982 ◽  
Vol 10 (1) ◽  
pp. 37-54 ◽  
Author(s):  
M. Kumar ◽  
C. W. Bert

Abstract Unidirectional cord-rubber specimens in the form of tensile coupons and sandwich beams were used. Using specimens with the cords oriented at 0°, 45°, and 90° to the loading direction and appropriate data reduction, we were able to obtain complete characterization for the in-plane stress-strain response of single-ply, unidirectional cord-rubber composites. All strains were measured by means of liquid mercury strain gages, for which the nonlinear strain response characteristic was obtained by calibration. Stress-strain data were obtained for the cases of both cord tension and cord compression. Materials investigated were aramid-rubber, polyester-rubber, and steel-rubber.


Sign in / Sign up

Export Citation Format

Share Document