natural clays
Recently Published Documents


TOTAL DOCUMENTS

234
(FIVE YEARS 28)

H-INDEX

31
(FIVE YEARS 0)

Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1211
Author(s):  
Anderson Parodia ◽  
Janaina A. Prasniski ◽  
Francine Bertella ◽  
Sibele B. C. Pergher

Pillared clays are interesting materials with applications in catalysis and adsorption processes. To obtain these materials, several preparation procedures are necessary and must be optimized to tune the final properties of the resulting pillared clay. Therefore, this article reports the influence of synthesis parameters (temperature and concentration) of Keggin-Al13 polycations and different intercalation times (0.5 up to 72 h) on the structural properties of Al-pillared clays. The natural clays are from Brazil, and they are composed mainly of montmorillonite. By XRD, N2 sorption, XRF and 27Al NMR results of the Al-PILCs, we verified that the pillaring solution could be prepared at room temperature with an aging time of 24 h. For the cation exchange process, a period of at least 2 h is necessary to ensure the formation of pillared materials. The concentration of the Keggin-Al13 polycations was evaluated by using diluted pillaring solutions followed by applying re-pillaring procedures. After submitting the pillared clay to another pillaring process, the number of pillars in the interlamellar space increased; however, the micropore volume decreased concomitantly. Thus, by optimizing the synthesis conditions of the Keggin-Al13 polycations, Al-PILCs could be obtained with good values of basal spacing and specific surface area.



Author(s):  
M. Garcia-Valles ◽  
D. Cuevas ◽  
P. Alfonso ◽  
S. Martínez

AbstractThe thermal properties and evolution of mineralogy and colour of kaolinitic clay from the Terra Alta region were studied. The mineralogy of these materials consists mainly of kaolinite (13–27 mass%) and quartz (48–86 mass%). Minor illite, hematite, K-feldspar and calcite also occur. The linear expansion and absorption curves were used to predict the optimal firing temperature of the raw clays. During firing, from 1100 °C the water absorption decreases steeply, due to an increase in liquid phase, which penetrates into the pores and close the porosity. At this temperature, the firing shrinkage increases progressively. The fired clays are mainly composed of quartz, cristobalite and mullite, with minor hematite and rutile. Mullite starts to appear at 1050–1100 °C. SEM observations show that porosity decreases with the firing temperature. The colour properties were measured in the raw clays and in the fired bricks at different temperatures. The lightness, L*, is lower in the fired test pieces respect to the natural clays. This colour varies according to the hematite content, being from white to reddish in the fired samples.



2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Rajaa Bassam ◽  
Achraf El hallaoui ◽  
Marouane El Alouani ◽  
Maissara Jabrane ◽  
El Hassan El Khattabi ◽  
...  

The aim of this study is the valorization of the Moroccan clays (QC-MC and QC-MT) from the Middle Atlas region as adsorbents for the treatment of water contaminated by cadmium Cd (II) ions. The physicochemical properties of natural clays are characterized by ICP-MS, XRD, FTIR, and SEM techniques. The adsorption process is investigated as a function of adsorbent mass, solution pH, contact time, temperature, and initial Cd (II) ion concentration. The kinetic investigation shows that the adsorption equilibrium of Cd (II) ions by both natural clays is reached after 30 min for QC-MT and 45 min for QC-MC and fits well to a pseudo-second-order kinetic model. The isotherm study is best fitted by a Freundlich model, with the maximum adsorption capacity determined by the linear form of the Freundlich isotherm being 4.23 mg/g for QC-MC and 5.85 mg/g for QC-MT at 25°C. The cadmium adsorption process was thermodynamically spontaneous and exothermic. The regeneration process showed that these natural clays had excellent recycling capacity. Characterization of the Moroccan natural clays before and after the adsorption process through FTIR, SEM, XRD, and EDX techniques confirmed the Cd (II) ion adsorption on the surfaces of both natural clay adsorbents. Overall, the high adsorption capacity of both natural clays for Cd (II) ions removal compared to other adsorbents motioned in the literature indicated that these two natural adsorbents are excellent candidates for heavy metal removal from aqueous environments.



2021 ◽  
Vol 43 ◽  
pp. 102274
Author(s):  
Diana Guaya ◽  
Rocío Jiménez ◽  
Janeth Sarango ◽  
César Valderrama ◽  
José Luis Cortina


2021 ◽  
Vol 885 (1) ◽  
pp. 012060
Author(s):  
S V Badmaeva ◽  
S Ts Khankhasaeva ◽  
M V Ukhinova

Abstract In this work, the adsorptive properties the Tuldon deposit were studied using the example of the adsorption of the basic dye “Methyl Green” from aqueous solutions. It has been established that the kinetic regularities of the dye adsorption on clay are consistent with the model of the kinetics of the pseudo-second order, characteristic of chemisorption. The isotherm of the dye adsorption is in good agreement with the Langmuir model. The results of the study allow us to conclude that the clay of the Tuldon deposit can be an effective sorbent for removing basic dyes from aqueous media.



2021 ◽  
Vol 2021 ◽  
pp. 321-327
Author(s):  
M.C. Lite ◽  
E.C. Tănăsescu ◽  
L.O. Secăreanu ◽  
I.M. Săndulache ◽  
O. Iordache ◽  
...  

Traditional uses of clay as medicine started in prehistoric times (Aboriginal times). Natural clays have been used in ancient and modern medicine, but the mechanism that makes certain clays lethal to bacterial pathogens has not been yet identified. The aim of this paper is to identify the proper clays that could be used in textile industry for improving textiles` functionality, based on the information extracted from literature. It is important, to differentiate between the properties that make a clay ‘healing’, versus what makes it ‘antibacterial’. So far, literature is abundant in reports regarding ‘healing’ clays, but, when tested against pathogens in vitro and compared to controls, they do not appear to have bactericidal properties. The studies carried out up to this point established that the physical adsorption of water and organic matter is the main feature which leads to healing properties of clays; however, the chemical interaction between clay and bacteria has received less attention. Clay properties, with potential application in medicine, have recently been started to be investigated and the results indicate that certain natural clays can have noticeable and extremely specific effects on microbial colonies. Further studies will be directed towards the characterization of the selected ‘claytextile’ pairs.



2021 ◽  
Vol 22 (18) ◽  
pp. 9670
Author(s):  
Marina Kryuchkova ◽  
Svetlana Batasheva ◽  
Farida Akhatova ◽  
Vasily Babaev ◽  
Daina Buzyurova ◽  
...  

The problem of purifying domestic and hospital wastewater from pharmaceutical compounds is becoming more and more urgent every year, because of the continuous accumulation of chemical pollutants in the environment and the limited availability of freshwater resources. Clay adsorbents have been repeatedly proposed as adsorbents for treatment purposes, but natural clays are hydrophilic and can be inefficient for catching hydrophobic pharmaceuticals. In this paper, a comparison of adsorption properties of pristine montmorillonite (MMT) and montmorillonite modified with stearyl trimethyl ammonium (hydrophobic MMT-STA) towards carbamazepine, ibuprofen, and paracetamol pharmaceuticals was performed. The efficiency of adsorption was investigated under varying solution pH, temperature, contact time, initial concentration of pharmaceuticals, and adsorbate/adsorbent mass ratio. MMT-STA was better than pristine MMT at removing all the pharmaceuticals studied. The adsorption capacity of hydrophobic montmorillonite to pharmaceuticals decreased in the following order: carbamazepine (97%) > ibuprofen (95%) > paracetamol (63–67%). Adsorption isotherms were best described by Freundlich model. Within the pharmaceutical concentration range of 10–50 µg/mL, the most optimal mass ratio of adsorbates to adsorbents was 1:300, pH 6, and a temperature of 25 °C. Thus, MMT-STA could be used as an efficient adsorbent for deconta×ating water of carbamazepine, ibuprofen, and paracetamol.



Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4942
Author(s):  
Florian Wesenauer ◽  
Christian Jordan ◽  
Mudassar Azam ◽  
Michael Harasek ◽  
Franz Winter

A series of porous clay samples prepared at different pretreatment temperatures have been tested in a diffusion chamber. Diffusivity and permeability were examined in a temperature range from ambient to 900 °C. Gaseous mixtures of O2, CO2, and N2 have been applied, as these species are the relevant gases in the context of clay brick firing and similar thermochemical processes. Diffusive transport characteristics have been determined by means of the mean transport-pore model, and permeability has been evaluated by Darcy’s law. CO2 diffusivity increased strongly with temperature, whereas O2 diffusion was limited to a certain level. It is proposed that one should consider CO2 surface diffusion in order to explain this phenomenon. The diffusion model was expanded and surface diffusion was included in the model equation. The results of the model fit reflected the important role of incorporated carbonates of the clay foundation in gas-phase (molecular or Knudsen) diffusivity. CO2 surface diffusion was observed to exhibit similar coefficients for two different investigated clays, and is therefore indicated as a property of natural clays. Permeability showed a progressive rise with temperature, in line with related literature.



Eng ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 312-324
Author(s):  
Andrés Pérez-González ◽  
Verónica Pinos-Vélez ◽  
Isabel Cipriani-Avila ◽  
Mariana Capparelli ◽  
Eliza Jara-Negrete ◽  
...  

Among emerging pollutants, endocrine disruptors such as estradiol are of most concern. Conventional water treatment technologies are not capable of removing this compound from water. This study aims to assess a method that combines physicochemical and biological strategies to eliminate estradiol even when there are other compounds present in the water matrix. Na-montmorillonite, Ca-montmorillonite and zeolite were used to remove estradiol in a medium with sulfamethoxazole, triclosan, and nicotine using a Plackett–Burman experimental design; each treatment was followed by biological filtration with Daphnia magna. Results showed between 40 to 92% estradiol adsorption in clays; no other compounds present in the mixture were adsorbed. The most significant factors for estradiol adsorption were the presence of nicotine and triclosan which favored the adsorption, the use of Ca-montmorillonite, Zeolite, and time did not favor the adsorption of estradiol. After the physicochemical treatment, Daphnia magna was able to remove between 0–93% of the remaining estradiol. The combination of adsorption and biological filtration in optimal conditions allowed the removal of 98% of the initial estradiol concentration.



2021 ◽  
Vol 9 (7) ◽  
pp. 738
Author(s):  
Zhiwen Sun ◽  
Gangqiang Kong ◽  
Yang Zhou ◽  
Yang Shen ◽  
Hanyu Xiao

A transparent clay manufactured using Carbopol® UltrezTM 10 (simplified as U10) was introduced, and its manufacturing processes were briefly described. Both relative transparency (RT) and modulation transfer function (MTF) methods were used to quantify the optical character variation via soil thickness. The transparency of this new transparent clay was analyzed and compared with four traditional transparent materials. The thixotropic properties of this synthetic transparent clay were measured in detail through the laboratory vane test. An exponential function was used to describe the thixotropy and sensitivity of the clay. The results showed that the new transparent clay has a relatively higher optical transparency than the majority of previous materials. Good-fitting results showed a similar development trend in thixotropy for the synthetic transparent clay and the natural ones. Furthermore, the sensitivity of the transparent clay was low to medium, which can simulate marine soil. With higher optical transparency than and similar thixotropy and sensitivity as natural clays, Carbopol® UltrezTM 10 shows great potential as a substitute for natural clay and is expected to be widely used in model tests.



Sign in / Sign up

Export Citation Format

Share Document