Development of Subsurface Geological Cross-Section from Limited Site-Specific Boreholes and Prior Geological Knowledge Using Iterative Convolution XGBoost

2021 ◽  
Vol 147 (9) ◽  
pp. 04021082
Author(s):  
Chao Shi ◽  
Yu Wang
2020 ◽  
Vol 22 ◽  
pp. 25-28
Author(s):  
Prakash Luitel ◽  
Suman Panthee

The section between Tal to Talekhu of Manang District lacks the detailed geological study. The geological mapping in the scale of 1:50,000 followed by the preparation of geological cross-section and lithostratigraphic column has been done in the present study. The studied area lies partially in the Higher Himalayan Crystalline and the Tibetan Tethys Sequence. The units of the Higher Himalayan Group from Tal to Talekhu consists mainly of vigorous to faintly calcareous gneiss, migmatitic gneiss, quartzite, granite, etc. They are named as the Calc. Silicate Gneiss and Paragneiss and the Orthogneiss and Granite units. The lowermost part of the Tibetan Tethys consisted of metamorphosed calcareous rocks containing silicates and feldspar, so this unit is termed as the Marble and Calc. Gneiss. The section is about 9 km in thickness and is highly deformed with presence of igneous rocks at many places.


Author(s):  
Chuan Zhang ◽  
Jane Y. Li ◽  
John Aguada ◽  
Howard Marks

Abstract This paper introduces a novel sample preparation method using plasma focused ion-beam (pFIB) milling at low grazing angle. Efficient and high precision preparation of site-specific cross-sectional samples with minimal alternation of device parameters can be achieved with this method. It offers the capability of acquiring a range of electrical characteristic signals from specific sites on the cross-section of devices, including imaging of junctions, Fins in the FinFETs and electrical probing of interconnect metal traces.


2017 ◽  
Vol 460 (1) ◽  
pp. 7-17 ◽  
Author(s):  
R. Stephenson ◽  
K. Piepjohn ◽  
C. Schiffer ◽  
W. Von Gosen ◽  
G. N. Oakey ◽  
...  

2019 ◽  
Vol 97 ◽  
pp. 02041
Author(s):  
Arkady Granovsky ◽  
Oleg Simakov ◽  
Bulat Dzhamuev

The use of external reinforcement based on carbon fibers is technically and economically justified to strengthen concrete structures, which is confirmed by years of experience. The use of this method of reinforcement for masonry structures has significantly less history and, accordingly, experience. However, experimental and site specific efficacy of the use of external reinforcement in the amplification of the pillars of masonry by the device holder has been proven. The experiments of strengthening of a brickwork carried out earlier, as well as the developed theory of calculation, concern application of a full-bodied brick. Given the volume of construction of large-format ceramic stone, the task of strengthening structures from it becomes more urgent every year. In order to solve this problem, the present experimental studies were carried out – experimental studies of the clip effect on the fragments of brickwork with the strengthening of the external reinforcement system based on carbon fibers. In addition to studies of the influence of the size of bricks and the presence of voids, there was a study of the possibility of strengthening the samples with a cross-section size ratio of more than 2. In this case, carbon through anchors were mounted in the Central part of the samples. The test results obtained characters of destruction of specimens, the ultimate load-bearing capacity, made the appropriate conclusions.


1997 ◽  
Vol 480 ◽  
Author(s):  
L. A. Giannuzzi ◽  
J. L. Drown ◽  
S. R. Brown ◽  
R. B. Irwin ◽  
F. A. Stevie

AbstractA site specific technique for cross-section transmission electron microscopy specimen preparation of difficult materials is presented. Focused ion beams are used to slice an electron transparent sliver of the specimen from a specific area of interest. Micromanipulation lift-out procedures are then used to transport the electron transparent specimen to a carbon coated copper grid for subsequent TEM analysis. The experimental procedures are described in detail and an example of the lift-out technique is presented.


2008 ◽  
Vol 27 (1) ◽  
pp. 113-130
Author(s):  
Richard Francaviglia

In 1895, self-trained mining engineer William K. Gordon, Sr (1862-1949) conducted a geological reconnaissance trip to far West Texas in search of coal deposits. A report from that trip reveals how Gordon's training in geology (acquired largely through reading) and his intrinsic interest in stratigraphy and geomorphology helped him effectively advise the Texas and Pacific Coal Company about the bleak prospects there. In 2005, using Gordon's never-before consulted field report, the author retraced, or rather re-hiked, Gordon's route. Gordon's report features hand-drawn maps and a geological cross-section that were field checked and compared to later data. The author concludes that Gordon enthusiastically, but often inaccurately, described the complex petrology in the rugged, semi-arid Eagle Mountains. Gordon was evidently vexed by how to identify some of the highly varied extrusive igneous rocks here. Nevertheless, Gordon's work should be recognized as the earliest serious geological reconnaissance in a remote area that would much later (1963) be studied in detail by geologists who had at their disposal considerably better tools to analyze the petrology, and possessed a growing awareness of plate tectonics that were unknown in Gordon's time.


2018 ◽  
Vol 277 ◽  
pp. 80-89 ◽  
Author(s):  
Zynovii Malanchuk ◽  
Viktor Moshynskyi ◽  
Yevhenii Malanchuk ◽  
Valerii Korniienko

Amber of amber-bearing deposits in Rivne-Volyn region of Ukraine has been analyzed. Relying upon instrumental techniques, physical and chemical as well as spectral analyses, and geological prospecting of the deposits, chemical composition and ultimate composition of amber occurring at the territory of Klesiv deposit (Ukraine, Rivne Region, Sarny District) have been identified. Klesiv amber contains the greatest part of inclusions; it contains 18 chemical elements. Basing upon the performed geological cross-section it has been determined that the amber occur in sandy soil and sandy-shale soil. The depth is insignificant – from 1 m to 10 – 15 m. Moreover, to determine the cost, experimental technique has been developed. The technique involves classification of the amber fragments according to their form, dimensions, and colour. Lithologic-and-facies sections of sites of Klesiv deposit have been obtained.


Sign in / Sign up

Export Citation Format

Share Document