Effect of Colloidal Silica Aqueous Gel on the Monotonic and Cyclic Response of Sands

2021 ◽  
Vol 147 (11) ◽  
pp. 04021122
Author(s):  
Eleni-Maria E. Pavlopoulou ◽  
Vassiliki N. Georgiannou
2000 ◽  
Vol 628 ◽  
Author(s):  
Guang-Way Jang ◽  
Ren-Jye Wu ◽  
Yuung-Ching Sheen ◽  
Ya-Hui Lin ◽  
Chi-Jung Chang

This work successfully prepared an UV curable organic-inorganic hybrid material consisting of organic modified colloidal silica. Applications of UV curable organic-inorganic hybrid materials include abrasion resistant coatings, photo-patternable thin films and waveguides. Colloidal silica containing reactive functional groups were also prepared by reacting organic silane and tetraethyl orthosilicate (TEOS) using sol-gel process. In addition, the efficiency of grafting organic moiety onto silica nanoparticles was investigated by applying TGA and FTIR techniques. Experimental results indicated a strong interdependence between surface modification efficiency and solution pH. Acrylate-SiO2 hybrid formation could result in a shifting of thermal degradation temperature of organic component from about 200°C to near 400°C. In addition, the stability of organic modified colloidal silica in UV curable formula and the physical properties of resulting coatings were discussed. Furthermore, the morphology of organic modified colloidal silica was investigated by performing TEM and SEM studies‥


2006 ◽  
Vol 60 (4) ◽  
pp. 537-544 ◽  
Author(s):  
Mitsuru Ishii ◽  
Toshio Kakui ◽  
Masao Ishiguro ◽  
Sayaka Sato
Keyword(s):  

1987 ◽  
Vol 52 (3) ◽  
pp. 572-581 ◽  
Author(s):  
Miroslav M. Kopečni ◽  
Slobodan K. Milonjic ◽  
Wladyslaw Rudzinski ◽  
Jacek Jagiello

Adsorption isotherms of three adsorbates on the solid beads obtained from colloidal silica were determined by means of gas chromatography at low surface coverages, when lateral interactions between the adsorbed molecules are negligible. The influence of thermal pretreatment on the adsorption properties of the solids was investigated in the temperature range from 343 to 423 K, while the solids were heated between 523 K and 1 223 K. The thermodynamic parameters of adsorption have been determined and used to discuss the adsorbate-adsorbent interactions.


Author(s):  
Corson L. Cramer ◽  
Beth Armstrong ◽  
Artem A. Trofimov ◽  
Peter Wang ◽  
Derek Siddel ◽  
...  

2008 ◽  
Vol 37 (5-6) ◽  
pp. 223-226 ◽  
Author(s):  
X. Li ◽  
H. L. Cao ◽  
S. Gao ◽  
F. Y. Pan ◽  
L. Q. Weng ◽  
...  

2016 ◽  
Vol 397 (2) ◽  
pp. 125-133 ◽  
Author(s):  
Yeong-Gon Choi ◽  
Jae-Il Kim ◽  
Eun-Kyoung Choi ◽  
Richard I. Carp ◽  
Yong-Sun Kim

Abstract Previous studies have shown that the Nε-carboxymethyl group is linked to not only one or more N-terminal Lys residues but also to one or more Lys residues of the protease-resistant core region of the pathogenic prion isoform (PrPSc) in prion-infected brains. Using an anti-advanced glycation end product (AGE) antibody, we detected nonenzymatically glycated PrPSc (AGE-PrPSc) in prion-infected brains following concentration by a series of ultracentrifugation steps with a sucrose cushion. In the present study, the levels of in vitro nonenzymatic glycation of PrPSc using sucrose were investigated to determine whether sucrose cushion can artificially and nonenzymatically induce in vitro glycation during ultracentrifugation. The first insoluble pellet fraction following the first ultracentrifugation (PU1st) collected from 263K scrapie-infected brains was incubated with sucrose, glucose or colloidal silica coated with polyvinylpyrrolidone (percoll). None of the compounds in vitro resulted in AGE-PrPSc. Nonetheless, glucose and percoll produced AGEs in vitro from other proteins within PU1st of the infected brains. This reaction could lead to the AGE-modified polymer(s) of nonenzymatic glycation-prone protein(s). This study showed that PrPSc is not nonenzymatically glycated in vitro with sucrose, glucose or percoll and that AGE-modified PrPSc can be isolated and enriched from prion-infected brains.


Sign in / Sign up

Export Citation Format

Share Document