Overland Flow Modeling with the Shallow Water Equations Using a Well-Balanced Numerical Scheme: Better Predictions or Just More Complexity

2015 ◽  
Vol 20 (10) ◽  
pp. 04015012 ◽  
Author(s):  
M. Rousseau ◽  
O. Cerdan ◽  
O. Delestre ◽  
F. Dupros ◽  
F. James ◽  
...  
2013 ◽  
Vol 15 (4) ◽  
pp. 1234-1257 ◽  
Author(s):  
Carmelo Juez ◽  
Javier Murillo ◽  
Pilar García-Navarro

Two-dimensional (2D) transient flow over an erodible bed can be modelled using shallow-water equations and the Exner equation to describe the morphological evolution of the bed. Considering the fact that well-proven capacity formulae are based on one-dimensional (1D) experimental steady flows, the assessment of these empirical relations under unsteady 1D and 2D situations is important. In order to ensure the reliability of the numerical experimentation, the formulation has to be general enough to allow the use of different empirical laws. Moreover, the numerical scheme must handle correctly the coupling between the 2D shallow-water equations and the Exner equation under any condition. In this work, a finite-volume numerical scheme that includes these two main features will be exploited here in 1D and 2D laboratory test cases. The relative performances of Meyer-Peter and Müller, Ashida and Michiue, Engelund and Fredsoe, Fernandez Luque and Van Beek, Parker, Smart, Nielsen, Wong and Camenen and Larson formulations are analysed in terms of the root mean square error. A new discretization of the Smart formula is provided, leading to promising predictions of the erosion/deposition rates. The results arising from this work are useful to justify the use of an empirical sediment bed-load discharge formula among the ones studied, regardless of the hydrodynamic situation.


2020 ◽  
Author(s):  
Shangzhi Chen ◽  
Feifei Zheng ◽  
Qingzhou Zhang

<p>With the possible climate change and increased pace of urbanization in the century, urban flooding has caused more and more attentions nowadays. Shallow water equations are widely used to reproduce the flow hydrodynamics of flooding around the urban areas, which have been proved a powerful tool for flood risk assessment and evacuation management, like river flow or flowing at drainage networks with irregular cross-sections at 1D scale. Over the last two decades, Godunov-type schemes have became popular for its robustness treating complex flow phenomenons. When tacking complex topography in the framework of Godunov-type scheme, sourer term needs to be treated property to preserve steady state, that flux gradient and sourer term are balanced. Capart et al. (2003) reconstructed the momentum flux by considering the balance of hydrostatic pressure with the approximated water surface level, which has the ability to tackle the irregular and non-prismatic channel flow with complex topography. This approximation is exact for two cases: 1) rectangular and prismatic channel; 2) water surface is horizontal. However, for other cases, approximation is employed to achieve the hydrostatic equilibrium, which has reduced the accuracy of the numerical solution and increased the complexity for the model implementation. </p><p>In this work, we present a new well-balanced numerical scheme for simulating 1D frictional shallow water flow with irregular cross-sections over complex topography involving wetting and drying. The proposed scheme solves, in a finite volume Godunov-type framework, a set of pre-balanced shallow water equations derived by considering pressure balancing (Liang and Marche, 2009). HLL approximated Riemann solver is adopted for the flux calculation at the cell interface. Non-negative reconstruction of Riemann state (Audusse et al., 2004) and local bed modification (Liang, 2010) produce stable and well-balanced solutions to shallow water flow hydrodynamics. Bed slope source term can be approximated using central difference and no special treatment is needed for wet and dry bed. The friction source term is discretized using a splitting implicit scheme and limiting value of friction force is used to ensure stability for the dry bottom (Liang and Marche, 2009). The new numerical scheme is validated against two theoretical benchmark tests and then compared with the validated shallow water model with circular and trapezoid cross-sections over complex topography involving wetting and drying. This method is also possible to reproduce the mixed flow in the conduit or for the flow with non-prismatic channel like river flow in the near future.</p><p>References</p><p>Audusse, E., Bouchut, F., Bristeau, M. O., Klein, R., & Perthame, B. T. (2004). A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM Journal on Scientific Computing, 25(6), 2050-2065.</p><p>Capart, H, Eldho, TI, Huang, SY, Young, DL, and Zech, Yves, "Treatment of natural geometry in finite volume river flow computations", Journal of Hydraulic Engineering 129, 5 (2003), pp. 385--393.</p><p>Liang, Qiuhua and Marche, Fabien, "Numerical resolution of well-balanced shallow water equations with complex source terms", Advances in water resources 32, 6 (2009), pp. 873--884.</p><p>Liang, Qiuhua, "Flood simulation using a well-balanced shallow flow model", Journal of hydraulic engineering 136, 9 (2010), pp. 669--675.</p>


2014 ◽  
Vol 77 (3) ◽  
pp. 159-182 ◽  
Author(s):  
Zsolt Horváth ◽  
Jürgen Waser ◽  
Rui A. P. Perdigão ◽  
Artem Konev ◽  
Günter Blöschl

10.29007/fsp8 ◽  
2018 ◽  
Author(s):  
Tian Wang ◽  
Jingming Hou ◽  
Peng Li ◽  
Jiaheng Zhao ◽  
Ilhan Özgen ◽  
...  

The fully 2D dynamic shallow water equations have been widely applied for numerical simulation of overland flow in the recent years. However, most of the existing friction term discretisation schemes do not recover the correct asymptotic flow behaviour as water depths becomes small. In this model, the shallow water equations were discretized by the framework of the Godunov-type finite volume scheme. The hydrostatic reconstruction is applied to reconstruct non-negative water depths at wet- dry interfaces. Numerical fluxes are computed with a HLLC solver. The novel aspects of the model include the slope source term treatment. Specific treatment of friction source terms has been proposed to discretize the friction terms to recover the correct asymptotic behaviour of SWEs when the water depth becomes small. The accuracy and robustness of the proposed model are verified by comparing with analytical solutions. The results demonstrate that the proposed method treating friction source term is a relatively more accurate, efficient, straightforward and universal one for evaluating overland flow problems.


2014 ◽  
Vol 17 (1) ◽  
pp. 47-59
Author(s):  
Hong Thi My Tran ◽  
Giang Song Le

This paper presents a mathematical model for detailed calculate the flooding flow in NhieuLoc – ThiNghe basin. The flow in sewers is considered as one-dimensional while overland flow is modeled using the 1D+2D integrated model. 1D flow was calculated from the Saint – Venant equations and 2D flow was calculated from the shallow water equations. The finite volume method was used. The linkage of models was received a necessary consideration. The application for NhieuLoc – ThiNghe basin case showed that the model could respond to the practical requirements.


Sign in / Sign up

Export Citation Format

Share Document