potential enstrophy
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 3)

H-INDEX

13
(FIVE YEARS 0)

2021 ◽  
Vol 6 (11) ◽  
Author(s):  
Marco Boetti ◽  
Maarten van Reeuwijk ◽  
Alexander Liberzon

Author(s):  
TAKURO MATSUTA ◽  
YUKIO MASUMOTO

AbstractThe non-locality of eddy-mean flow interactions, which appears explicitly in the modified Lorentz diagram as a form of the interaction energy, and its link to other estimation methods are revisited, and a new formulation for the potential enstrophy is proposed. The application of these methods to the Kuroshio extension region suggests that the combined use of energy analysis with other methods, including the potential enstrophy diagram, provides more comprehensive understandings for the eddy-mean flow interactions in the limited region. It is shown that the interaction energy is transported from the nearshore and upstream regions to the downstream region in the form of the interaction energy flux, causing acceleration of the Kuroshio extension jet in the downstream region. The potential enstrophy diagram indicates that the eddy field decelerates (accelerates) the jet in the nearshore (downstream) region, which is a consistent result with the energy analysis. It turns out that the interaction potential enstrophy flux is radiated from a region of the eddy kinetic energy maximum towards the upstream region, which is the opposite direction from the interaction energy flux. The interaction potential enstrophy flux originated from this eddy kinetic energy maximum region also convergences near the center of the northern recirculation gyre of the Kuroshio extension region and tends to stabilize the structures of the recirculation gyre. Together with the energy analysis that indicates the eddy field accelerates the northeastern part of the recirculation gyre through the local interactions, the present analyses support the arguments on the eddy-driven northern recirculation gyre.


Author(s):  
V. O. Ivchenko ◽  
V. B. Zalesny

The problem of parametrization of the eddy fluxes of a potential vorticity is discussed. Traditional diffusion parameterization is complemented by the inclusion of a rotational component. For the analysis of the new scheme, a quasi-geostrophic model of the dynamics of the barotropic flow in a zonal channel with a non-uniform bottom is used. An analytical solution of the problem is found and the influence of topography on the flow disturbances is discussed. It is shown that the equation for the eddy potential enstrophy allows to relate diffusion and «rotational» coefficients.


2017 ◽  
Vol 145 (3) ◽  
pp. 751-772 ◽  
Author(s):  
Michael D. Toy ◽  
Ramachandran D. Nair

An energy and potential enstrophy conserving finite-difference scheme for the shallow-water equations is derived in generalized curvilinear coordinates. This is an extension of a scheme formulated by Arakawa and Lamb for orthogonal coordinate systems. The starting point for the present scheme is the shallow-water equations cast in generalized curvilinear coordinates, and tensor analysis is used to derive the invariant conservation properties. Preliminary tests on a flat plane with doubly periodic boundary conditions are presented. The scheme is shown to possess similar order-of-convergence error characteristics using a nonorthogonal coordinate compared to Cartesian coordinates for a nonlinear test of flow over an isolated mountain. A linear normal mode analysis shows that the discrete form of the Coriolis term provides stationary geostrophically balanced modes for the nonorthogonal coordinate and no unphysical computational modes are introduced. The scheme uses centered differences and averages, which are formally second-order accurate. An empirical test with a steady geostrophically balanced flow shows that the convergence rate of the truncation errors of the discrete operators is second order. The next step will be to adapt the scheme for use on the cubed sphere, which will involve modification at the lateral boundaries of the cube faces.


2017 ◽  
Vol 10 (2) ◽  
pp. 791-810 ◽  
Author(s):  
Christopher Eldred ◽  
David Randall

Abstract. The shallow water equations provide a useful analogue of the fully compressible Euler equations since they have similar characteristics: conservation laws, inertia-gravity and Rossby waves, and a (quasi-) balanced state. In order to obtain realistic simulation results, it is desirable that numerical models have discrete analogues of these properties. Two prototypical examples of such schemes are the 1981 Arakawa and Lamb (AL81) C-grid total energy and potential enstrophy conserving scheme, and the 2007 Salmon (S07) Z-grid total energy and potential enstrophy conserving scheme. Unfortunately, the AL81 scheme is restricted to logically square, orthogonal grids, and the S07 scheme is restricted to uniform square grids. The current work extends the AL81 scheme to arbitrary non-orthogonal polygonal grids and the S07 scheme to arbitrary orthogonal spherical polygonal grids in a manner that allows for both total energy and potential enstrophy conservation, by combining Hamiltonian methods (work done by Salmon, Gassmann, Dubos, and others) and discrete exterior calculus (Thuburn, Cotter, Dubos, Ringler, Skamarock, Klemp, and others). Detailed results of the schemes applied to standard test cases are deferred to part 2 of this series of papers.


2016 ◽  
Author(s):  
Christopher Eldred ◽  
David Randall

Abstract. The shallow water equations provide a useful analogue of the fully compressible Euler equations since they have similar characteristics: conservation laws, inertia-gravity and Rossby waves and a (quasi-) balanced state. In order to obtain realistic simulation results, it is desirable that numerical models have discrete analogues of these properties. Two prototypical examples of such schemes are the 1981 Arakawa and Lamb (AL81) C-grid total energy and potential enstrophy conserving scheme, and the 2007 Salmon (S07) Z-grid total energy and potential enstrophy conserving scheme. Unfortunately, the AL81 scheme is restricted to logically square, orthogonal grids; and the S07 scheme is restricted to uniform square grids. The current work extends the AL81 scheme to arbitrary non-orthogonal polygonal grids and the S07 scheme to arbitrary orthogonal spherical polygonal grids in a manner that allows both total energy and potential enstrophy conservation, by combining Hamiltonian methods (work done by Salmon, Gassmann, Dubos and others) and Discrete Exterior Calculus (Thuburn, Cotter, Dubos, Ringler, Skamarock, Klemp and others). Detailed results of the schemes applied to standard test cases are deferred to Part 2 of this series of papers.


2013 ◽  
Vol 722 ◽  
Author(s):  
Michael L. Waite

AbstractDirect numerical simulations are used to investigate potential enstrophy in stratified turbulence with small Froude numbers, large Reynolds numbers, and buoyancy Reynolds numbers ($R{e}_{b} $) both smaller and larger than unity. We investigate the conditions under which the potential enstrophy, which is a quartic quantity in the flow variables, can be approximated by its quadratic terms, as is often done in geophysical fluid dynamics. We show that at large scales, the quadratic fraction of the potential enstrophy is determined by $R{e}_{b} $. The quadratic part dominates for small $R{e}_{b} $, i.e. in the viscously coupled regime of stratified turbulence, but not when $R{e}_{b} \gtrsim 1$. The breakdown of the quadratic approximation is consistent with the development of Kelvin–Helmholtz instabilities, which are frequently observed to grow on the layerwise structure of stratified turbulence when $R{e}_{b} $ is not too small.


2012 ◽  
Vol 140 (10) ◽  
pp. 3220-3234 ◽  
Author(s):  
Hilary Weller

Abstract The arbitrarily structured C grid, Thuburn–Ringler–Skamarock–Klemp (TRiSK), is being used in the Model for Prediction Across Scales (MPAS) and is being considered by the Met Office for their next dynamical core. However, the hexagonal C grid supports a branch of spurious Rossby modes, which lead to erroneous grid-scale oscillations of potential vorticity (PV). It is shown how these modes can be harmlessly controlled by using upwind-biased interpolation schemes for PV. A number of existing advection schemes for PV are tested, including that used in MPAS, and none are found to give adequate results for all grids and all cases. Therefore a new scheme is proposed; continuous, linear-upwind stabilized transport (CLUST), a blend between centered and linear-upwind with the blend dependent on the flow direction with respect to the cell edge. A diagnostic of grid-scale oscillations is proposed that gives further discrimination between schemes than using potential enstrophy alone. Indeed, some schemes are found to destroy potential enstrophy while grid-scale oscillations grow. CLUST performs well on hexagonal-icosahedral grids and unrotated skipped latitude–longitude grids of the sphere for various shallow-water test cases. Despite the computational modes, the hexagonal icosahedral grid performs well since these modes are easy and harmless to filter. As a result, TRiSK appears to perform better than a spectral shallow-water model.


Sign in / Sign up

Export Citation Format

Share Document