Application of Statistical Analysis for Mixture Design of High-Strength Self-Consolidating Concrete Containing Metakaolin

2014 ◽  
Vol 26 (6) ◽  
pp. 04014016 ◽  
Author(s):  
Ahmed A. Abouhussien ◽  
Assem A. A. Hassan
1999 ◽  
Vol 32 (10) ◽  
pp. 734-748 ◽  
Author(s):  
A. J. Kappos ◽  
D. Konstantinidis

Author(s):  
V. A. Shruthi ◽  
Ranjitha B. Tangadagi ◽  
K. G. Shwetha ◽  
R. Nagendra ◽  
C. Ranganath ◽  
...  

Author(s):  
Han-Seung Lee ◽  
Seung-Min Lim ◽  
Xiao-Yong Wang

Abstract High-volume slag (HVS) can reduce the CO2 emissions of concrete, but increase the carbonation depth of concrete. In particular, because of the effects of climate change, carbonation will accelerate. However, the uptake of CO2 as a result of carbonation can mitigate the harm of CO2 emissions. This study proposes an optimal mixture design method of low-CO2 HVS concrete considering climate change, carbonation, and CO2 uptake. Firstly, net CO2 emissions are calculated by subtracting the CO2 emitted by the material from the uptake of CO2 by carbonation. The strength and depth of carbonation are evaluated by a comprehensive model based on hydration. Secondly, a genetic algorithm (GA) is used to find the optimal mixture. The objective function of the GA is net CO2 emissions. The constraints of the GA include the strength, carbonation, workability, and range of concrete components. Thirdly, the results show that carbonation durability is a control factor of the mixture design of low-strength HVS concrete, while strength is a control factor of the mixture design of high-strength HVS concrete. After considering climate change, the threshold of strength control increases. With the increase of strength, the net CO2 emissions increase, while the CO2 uptake ratio decreases.


2020 ◽  
Vol 18 (6) ◽  
pp. 1731-1747
Author(s):  
Yacine Abadou ◽  
Abderrahmane Ghrieb ◽  
Rosa Bustamante ◽  
Hayette Faid

Purpose The purpose of this study is to fit an appropriate mathematical model to express response variables as functions of the proportions of the mixture components. One purpose of statistical modeling in a mixture experiment is to model the blending surface such that predictions of the response for any mixture component, singly or in combination, can be made empirically. Testing of the model adequacy will also be an important part of the statistical procedure. Design/methodology/approach A series of mortar using air lime, marble and ceramic sanitary waste aggregates were prepared for statistically designed combinations. The combinations were designed based on the mixture-design concept of design of experiments; this mortar is often used as a filler material in restoration projects. The aim of this work is to find an optimal composition of a paste for the manufacture of air lime mortar with ceramic and marble waste. This investigation aims to recommend mix design for air lime-based mortar, by optimizing the input combination for different properties, and to predict properties such as mechanical strength, thermogravimetric and x-ray diffraction analysis with a high degree of accuracy, based on a statistical analysis of experimental data. Findings This paper discusses those mortar properties that architects, contractors and owners consider important. For each of these properties, the influence of ceramic and marble waste in the air lime mortar is explored. The flexibility of lime-based mortars with waste materials to meet a wide range of needs in both new construction and restoration of masonry projects is demonstrated. Originality/value The objective of the present investigation is to recommend mixture design for air lime mortar with waste, by optimizing the input combination for different properties, and to predict properties such as compressive strength, flexural strength with a high degree of accuracy, based on the statistical analysis of experimental data. The authors conducted a mixture design study that takes into account dependent parameters such as the constituents of our air lime-based mortar where we have determined an experiment matrix to which we have connected the two responses, namely, compressive and flexural strength. By introducing the desirability criteria of these two responses, using JMP software, we were able to obtain a mixture optimal for air lime mortar with ceramic and marble waste.


Sign in / Sign up

Export Citation Format

Share Document