scholarly journals Replacement of Quartz in Cementitious Composites Using PET Particles: A Statistical Analysis of the Physical and Mechanical Properties

2016 ◽  
Vol 28 (1) ◽  
pp. 06015006
Author(s):  
Anine C. Detomi ◽  
Sergio L. M. R. Filho ◽  
Túlio H. Panzera ◽  
Marco A. Schiavon ◽  
Vania R. V. Silva ◽  
...  
2021 ◽  
Vol 25 (109) ◽  
pp. 88-97
Author(s):  
Carlos Magno Chavarry Vallejos ◽  
Liliana Janet Chavarría Reyes ◽  
Xavier Antonio Laos Laura ◽  
Andrés Avelino Valencia Gutiérrez ◽  
Enriqueta Pereyra Salardi ◽  
...  

El presente artículo tiene como objetivo determinar la influencia de la adición del dióxido de titanio (TiO2) en el mortero de cemento Pórtland Tipo I. La investigación es descriptiva, correlacional, explicativo, con diseño experimental, longitudinal, prospectivo y estudio de cohorte. Se elaboró una mezcla patrón y tres mezclas de mortero con 5%, 7.5% y 10% de contenido de TiO2 como reemplazo del volumen de cemento para las propiedades autolimpiantes se realizó el ensayo de rodamina e intemperismo. La incorporación de dióxido de titanio disminuyó la resistencia a la compresión, incrementó la fluidez y tasa de absorción de agua; la prueba de rodamina dio que el mortero sin actividad fotocatalítico no contenía TiO2 porque no cumple con los factores de fotodegradación R4 y R26. Mediante la exposición de paneles al intemperismo favoreciendo la propiedad autolimpiante de los morteros con adición de TiO2 (5%). Palabras Clave: Actividad foto catalítico, dióxido de titanio, factores de fotodegradación, propiedades mecánicas y autolimpiante. Referencias [1]E. Medina and H. Pérez, “Influencia del fotocatalizador dióxido de titanio en las propiedades autolimpiables y mecánicas del mortero de cemento - arena 1:4 - Cajamarca,” Universidad Nacional de Cajamarca, 2017. [2]G. Abella, “Mejora de las propiedades de materiales a base de cemento que contienen TiO 2 : propiedades autolimpiantes,” Universidad Politécnica de Madrid, 2015. [3]J. Gonzalez, “El Dióxido de titanio como material fotocatalitico y su influencia en la resistencia a la compresión en Morteros,” Universidad de San Buenaaventura Seccional Bello, 2015. [4]D. Jimenez and J. Moreno, “Efecto del reemplazo de cemento portland por el dioido de titanio en las propiedades mecanicas del mortero,” Pontificia Universidad Javeriana, 2016. [5]L. Wang, H. Zhang, and Y. Gao, “Effect of TiO2 nanoparticles on physical and mechanical properties of cement at low temperatures,” Adv. Mater. Sci. Eng., 2018, doi: 10.1155/2018/8934689. [6]Comisión de Normalización y de Fiscalización de Barreras Comerciales no Arancelares, Norma Técnica Peruana. Perú, 2013, p. 29. [7]ASTM Internacional, “ASTM C150,” 2021. https://www.astm.org/Database.Cart/Historical/C150-07-SP.htm. [8]M. Issa, “( current astm c150 / aashto m85 ) with limestone and process addition ( ASTM C465 / AASHTO M327 ) on the performance of concrete for pavement and Prepared By,” 2014. [9]S. Zailan, N. Mahmed, M. Abdullah, A. Sandu, and N. Shahedan, “Review on characterization and mechanical performance of self-cleaning concrete,” MATEC Web Conf., vol. 97, pp. 1–7, 2017, doi: 10.1051/matecconf/20179701022. [10]C. Chavarry, L. Chavarría, A. Valencia, E. Pereyra, J. Arieta, and C. Rengifo, “Hormigón reforzado con vidrio molido para controlar grietas y fisuras por contracción plástica,” Pro Sci., vol. 4, no. 31, pp. 31–41, 2020, doi: 10.29018/issn.2588-1000vol4iss31.2020pp31-41. [11]D. Tobaldi, “Materiali ceramici per edilizia con funzionalità fotocatalitica,” Università di Bologna, 2009. [12]Norme UNI, “Norma Italiana UNI 11259,” 2016. http://store.uni.com/catalogo/uni-11259-2008?josso_back_to=http://store.uni.com/josso-security-check.php&josso_cmd=login_optional&josso_partnerapp_host=store.uni.com. [13]E. Grebenisan, H. Szilagyi, A. Hegyi, C. Mircea, and C. Baera, “Directory lines regarding the desing and production of self-cleaning cementitious composites,” Sect. Green Build. Technol. Mater., vol. 19, no. 6, 2019. [14]M. Kaszynska, “The influence of TIO2 nanoparticles on the properties of self-cleaning cement mortar,” Int. Multidiscip. Sci. GeoConference SGEM, pp. 333–341, 2018.


2021 ◽  
Vol 113 ◽  
pp. 36-42
Author(s):  
Barbara Białowąs ◽  
Karol Szymanowski

Effect of thermomechanical densification of pine wood (Pinus sylvestris L.) on cutting forces and roughness during milling. The paper presents the results of research concerning the assessment of machinability of pine wood thermomechanically compacted. The assessment was made on the basis of the cutting forces and surface roughness after the milling process. Selected properties of native and modified wood were examined. Based on the research, it was found that compacted wood is characterized by higher cutting forces during milling. The surface quality after milling was examined and the roughness index Ra values were determined. The research shows that the modified wood is characterized by a lower Ra value both along and across the grain. Statistical analysis showed that the modification had a statistically significant effect on the values of cutting forces and the physical and mechanical properties of the tested wood.


2018 ◽  
Vol 10 (Especial) ◽  
pp. 65-70
Author(s):  
Adriano Seidi Demarchi Mikami ◽  
Larissa Queiroz Minillo

The interest in replacing native wood with fast growing reforestation wood is recurrent, aiming at larger quantities of material in less time with no losses in its resistive properties. This paper consists in comparing the behavior of in natura structural timber parts with glued laminated timber, made with polyurethane resin based on castor oil, with regard to the resistance to axial compression. The assembly process of these pieces aims to achieve a similar or even superior resistance to the solid ones, considering that the MLC method allows the construction of structural pieces of many sizes and formats using different pieces of wood. Two this end, two species of wood, Pinus and Eucalyptus will be compared. The polyurethane resin, manufactured by the company Imperveg, was used in the process of glueing the stacks together. Evaluations will be performed according to NBR7190 (1997) aiming to characterize the physical and mechanical properties of the pieces and the results obtained will be submitted to statistical analysis by the Anova method.


2016 ◽  
Author(s):  
Y. Yasmin ◽  
M. N. Mazlee ◽  
A. H. Norzilah ◽  
J. B. Shamsul ◽  
R. Azmi ◽  
...  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Joanna Hydzik-Wiśniewska ◽  
Łukasz Bednarek

AbstractThe constantly growing, broadly understood, construction industry requires the use of a large amount of aggregates. The construction of roads, motorways, railway lines and hydrotechnical structures requires the use of aggregates of high quality, which is primarily determined by mechanical properties. The basic parameters describing mechanical properties of aggregates are the Los Angeles (LA) fragmentation resistance coefficient and the Micro-Deval (MDE) abrasion resistance coefficient. The LA and MDE coefficients depend mainly on the type of rock and its physical and mechanical properties. This has been thoroughly researched and documented as evidenced by the abundant literature in the field. However, the correlation between LA and MDE coefficients still gives rise to extensive discussions and some concerns. A number of publications demonstrate dependencies for various types of aggregates. Therefore, research was undertaken to present statistical analysis for one type of aggregate and one geological area.This article presents the results of the fragmentation resistance test in the Los Angeles drum and the abrasion resistance test in the Micro-Deval drum of aggregates from Carpathian sandstone deposits. Aggregate samples were divided into three groups according to the location of the deposits and the tectonic unit from which they originated. The obtained results were subjected to static analysis to fit the best mathematical function describing the relationship between the two parameters.


2014 ◽  
Vol 61 ◽  
pp. 49-54 ◽  
Author(s):  
Özge Andiç-Çakir ◽  
Mehmet Sarikanat ◽  
Hikmet Bahadir Tüfekçi ◽  
Cihan Demirci ◽  
Ümit Halis Erdoğan

Sign in / Sign up

Export Citation Format

Share Document