Influence of Pipe Material on the Transmission of Vibroacoustic Leak Signals in Real Complex Water Distribution Systems: Case Study

2018 ◽  
Vol 9 (3) ◽  
pp. 05018003 ◽  
Author(s):  
Joseph D. Butterfield ◽  
Richard P. Collins ◽  
Stephen B. M. Beck
2015 ◽  
Vol 18 (1) ◽  
pp. 96-114 ◽  
Author(s):  
S. R. Mounce ◽  
E. J. M. Blokker ◽  
S. P. Husband ◽  
W. R. Furnass ◽  
P. G. Schaap ◽  
...  

Particulate material accumulates over time as cohesive layers on internal pipeline surfaces in water distribution systems (WDS). When mobilised, this material can cause discolouration. This paper explores factors expected to be involved in this accumulation process. Two complementary machine learning methodologies are applied to significant amounts of real world field data from both a qualitative and a quantitative perspective. First, Kohonen self-organising maps were used for integrative and interpretative multivariate data mining of potential factors affecting accumulation. Second, evolutionary polynomial regression (EPR), a hybrid data-driven technique, was applied that combines genetic algorithms with numerical regression for developing easily interpretable mathematical model expressions. EPR was used to explore producing novel simple expressions to highlight important accumulation factors. Three case studies are presented: UK national and two Dutch local studies. The results highlight bulk water iron concentration, pipe material and looped network areas as key descriptive parameters for the UK study. At the local level, a significantly increased third data set allowed K-fold cross validation. The mean cross validation coefficient of determination was 0.945 for training data and 0.930 for testing data for an equation utilising amount of material mobilised and soil temperature for estimating daily regeneration rate. The approach shows promise for developing transferable expressions usable for pro-active WDS management.


2020 ◽  
Author(s):  
Mashor Housh ◽  
Noy Kadosh ◽  
Alex Frid

<p>Water Distribution Systems (WDSs) are critical infrastructures that supply drinking water from water sources to end-users. Smart WDSs could be designed by integrating physical components (e.g. valve and pumps) with computation and networking devices. As such, in smart WDSs, pumps and valves are automatically controlled together with continuous monitoring of important systems' parameters. However, despite its advantage of improved efficacy, the automated control and operation through a cyber-layer can expose the system to cyber-physical attacks. One-Class classification technique is proposed to detect such attacks by analyzing collected sensors' readings from the system components. One-class classifiers have been found suitable for classifying "normal" and "abnormal" conditions with unbalanced datasets, which are expected in the cyber-attack detection problem. In the cyber-attack detection problem, typically, most of the data samples are under the "normal" state, and only small fraction of the samples can be suspected as under-attack (i.e. "abnormal" state). The results of this study demonstrate that one-class classification algorithms can be suitable for the cyber-attack detection problem and can compete with existing approaches. More specifically, this study examines the Support Vector Data Description (SVDD) method together with a tailored features selection methodology, which is based on the physical understanding of the WDS topology. The developed algorithm is examined on BATADAL datasets, which demonstrate a quasi-realistic case study and on a new case study of a large-scale WDS.</p>


2019 ◽  
Vol 21 (6) ◽  
pp. 1030-1047 ◽  
Author(s):  
Fattah Soroush ◽  
Mohammad J. Abedini

Abstract This paper presents a novel methodology for designing an optimal pressure sensor to make average pressure field in water distribution systems (WDS) more accurate via geostatistical tools coupled with genetic algorithm (GA) under normal operating condition. In light of this, the objective function is introduced based on geostatistical technique as variance of residual of block ordinary kriging (BOK). In order to solve the problem of sensor placement, three different approaches, so-called, simplified, exhaustive, and random search optimization are considered. To the best of the authors' knowledge, this is the first time whereby geostatistical tools are used to design a pressure monitoring network in the WDS. The proposed methodology is first tested and verified on a literature case study of Anytown WDS and then is applied to a real-world case study referred to as C-Town consisting of five district metered areas (DMAs). The proposed methodology has several advantages over existing more conventional approaches which will be demonstrated in this paper. The results indicate that this method outperforms the conventional paradigms in current use in terms of mathematical labor and the results are quite promising.


Sign in / Sign up

Export Citation Format

Share Document