Structural Behavior of Concrete Incorporating Glass Powder Used in Reinforced Concrete Columns

Author(s):  
Arame Niang ◽  
Nathalie Roy ◽  
Arezki Tagnit-Hamou
Author(s):  
Matheus Wanglon Ferreira ◽  
Luiz Carlos Pinto da Silva Filho ◽  
Mauro de Vasconcellos Real

ABSTRACT: A three-dimensional (3D) transient numerical model for thermomechanical analysis developed with Finite Element Method (FEM) using the software ANSYS 19.1 is exposed in this paper. The proposed model aims to predict the structural behavior of reinforced concrete columns in a fire situation since it is known that high temperatures significantly reduce their mechanical resistance. For this, the main factors that govern their structural behavior should be considered. Analyses obtained by the proposed model were validated with results from experimental data, evidencing a good correlation between numerical and experimental fields.


2020 ◽  
Vol 3 (4) ◽  
pp. 216-228
Author(s):  
K. Senthil ◽  
Iwansh Gupta ◽  
S. Rupali ◽  
Loizos Pelecanos

An explosion on the elevated structures caused by terrorist activities or manmade events can induce significant deformations in the Civil Engineering structures. Therefore, it is necessary to review the response of the structural behavior such as reinforced concrete slab, reinforced concrete beams, and columns. On the basis of this objective, a detailed literature review is conducted to understand the scope for protecting such structures and the structural behavior under blast loading. Based on the detailed literature survey, the investigations about the behavior of conventional reinforced concrete columns and slab initiated in 2005 however, the behavior of reinforced concrete beam was focused since the year 2010. Also, the literature reveals that the investigations on structural elements using analytical techniques are limited in comparison to experiments and simulations. In addition to that, the response of the structural elements was predicted and the trend was calibrated and fitted logarithmically with the experimental results. The predicted spall diameter in the reinforced concrete slab is 0.95 m corresponding charge weight of 100 kg however the influence of spalling was found to be negligible after the 100 kg of charge weight. The predicted spall length in the reinforced concrete beam is 1.6 m corresponding charge weight of 100 kg and the effect may be negligible after 100 kg of charge weight. The predicted deflection in the reinforced concrete columns is 30 mm corresponding to a peak reflected impulse of 1000 MPa-ms, whereas the deflection was found to be negligible after the 1000 MPa-ms of peak reflected impulse.


Author(s):  
Л. Р. Маилян ◽  
С. А. Стельмах ◽  
Е. М. Щербань ◽  
М. П. Нажуев

Состояние проблемы. Железобетонные элементы изготавливаются, как правило, по трем основным технологиям - вибрированием, центрифугированием и виброцентрифугированием. Однако все основные расчетные зависимости для определения их несущей способности выведены, исходя из основного постулата - постоянства и равенства характеристик бетона по сечению, что реализуется лишь в вибрированных колоннах. Результаты. В рамках диаграммного подхода предложены итерационный, приближенный и упрощенный способы расчета несущей способности железобетонных вибрированных, центрифугированных и виброцентрифугированных колонн. Выводы. Расчет по диаграммному подходу показал существенно более подходящую сходимость с опытными данными, чем расчет по методике норм, а также дал лучшие результаты при использовании дифференциальных характеристик бетона, чем при использовании интегральных и, тем более, нормативных характеристик бетона. Statement of the problem. Reinforced concrete elements are typically manufactured according to three basic technologies - vibration, centrifugation and vibrocentrifugation. However, all the basic calculated dependencies for determining their bearing capacity were derived using the main postulate, i.e., the constancy and equality of the characteristics of concrete over the cross section, which is implemented only in vibrated columns. Results. Within the framework of the diagrammatic approach, iterative, approximate and simplified methods of calculating the bearing capacity of reinforced concrete vibrated, centrifuged and vibrocentrifuged columns are proposed. Conclusions. The calculation according to the diagrammatic approach showed a significantly better convergence with the experimental data than that using the method of norms, and also performs better when using differential characteristics of concrete than when employing integral and particularly standard characteristics of concrete.


2018 ◽  
Vol 12 (1) ◽  
pp. 47-61
Author(s):  
Wenjuan Lv ◽  
Baodong Liu ◽  
Ming Li ◽  
Lin Li ◽  
Pengyuan Zhang

Background: For reinforced concrete structures under different humid conditions, the mechanical properties of concrete are significantly affected by the moisture content, which may result in a great change of the functional performance and bearing capacity. Objective: This paper presents an experiment to investigate the influence of the moisture content on the dynamic characteristics and hysteretic behavior of reinforced concrete column. Results: The results show that the natural frequency of reinforced concrete columns increases quickly at an early stage of immersion, but there is little change when the columns are close to saturation; the difference between the natural frequencies before and after cyclic test grows as the moisture content rises. The damping ratio slightly decreases first and then increases with the increase of moisture content; the damping ratio after the cyclic test is larger than before the test due to the development of the micro-cracks. Conclusion: The trend of energy dissipation is on the rise with increasing moisture content, although at an early stage, it decreases slightly. According to the experimental result, a formula for the moisture content on the average energy dissipation of reinforced concrete columns is proposed.


Sign in / Sign up

Export Citation Format

Share Document