Tests of Cold-Formed Steel Semi-Oval Hollow Section Members under Eccentric Axial Load

2020 ◽  
Vol 146 (4) ◽  
pp. 04020027 ◽  
Author(s):  
Man-Tai Chen ◽  
Ben Young
2015 ◽  
Vol 752-753 ◽  
pp. 533-538
Author(s):  
Khaled Alenezi ◽  
Mahmood Md Tahir ◽  
Talal Alhajri ◽  
Mohamad Ragae

Cold-formed steel (CFS) is known as slender or class 4 section due to high ratio of web-to-thickness ratio. The compressive strength of this type of section is usually very low as it tends to fail due to distortion and warping before reaching the actual compressive strength. The aim of this study is to determine the ultimate capacity of build-up lipped CFS assembled with ferrocement jacket where web-stiffener is provided as the proposed composite column (CFFCC) is under axial compression load. Nine specimens of composite columns were prepared and tested. The main parameters varied in the CFFCC columns are column height, cold-formed steel thickness and influence of ferrocement jacket and web-stiffener. There are three different heights of the CFFCC composite column namely 2000mm, 3000mm and 4000mm used in this study. All CFFCC columns were tested under axial load where a thick steel plate is used to evenly distribute the applied load. The results show the effect of providing both the ferrocement jacket to increase the confinement effect and the web stiffener to provide sufficient lateral support to the column web. A significant increase in both the strength and the ductility of the specimens under axial loading has been recorded. The strength capacity of CFFCC has been improved by about 178% greater than that of bare steel column. Also it is found that, axial load capacity of CFS-ferrocement jacket composite columns (CFFCC) were increased with the increase in thickness of CFS. The use of web-stiffener has improved the axial load capacity of the column but not that significant.


2015 ◽  
Vol 74 (4) ◽  
Author(s):  
Cher Siang Tan ◽  
Yee Ling Lee ◽  
Shahrin Mohammad ◽  
Siong Kang Lim ◽  
Yeong Huei Lee ◽  
...  

This paper presents the experimental investigation on flexural characteristic of slab panels with embedded cold-formed steel frame as reinforcement. Perforated cold-formed steel channel sections are formed into steel frames as replacement to the conventional reinforcement bars inside precast concrete slab panels. A series of six experimental specimens for precast slab panels were tested. The specimens with 3 configurations namely control sample (CS) with conventional reinforcement bars, single horizontal C-channel section (SH) and double horizontal C-channel sections (DH) formed into rectangular hollow section. Results show that the tested slab specimens failed at the flexural crack at mid-span, under loading point and shear at the support. Tearing of shear connector in the cold-formed steel section was found to be the main factor for the structural failure. SH specimens achieved the highest ultimate load capacity, with average value of 138.5 kN, followed by DH specimens, 116.5 kN, and the control samples, 59.0 kN. The results showed that the proposed reinforced slab panel with embedded cold-formed steel frame was more effective compared to conventional reinforced slab.


Sign in / Sign up

Export Citation Format

Share Document