Structural Performance of Post-Tensioned CLT Shear Walls with Energy Dissipators

2020 ◽  
Vol 146 (4) ◽  
pp. 04020035 ◽  
Author(s):  
Zhiyong Chen ◽  
Marjan Popovski ◽  
Asif Iqbal
Author(s):  
Minjuan He ◽  
Xiaofeng Sun ◽  
Zheng Li

This paper presents the direct displacement-based design (DDD) procedure, structural modelling method, and structural performance calibration for post-tensioned CLT shear wall structures (PT-CLTstrs). Numerical models of the post-tensioned (PT) CLT shear walls were developed and calibrated with the experimental results. Based on the developed shear wall models, parametric analysis were conducted to investigate the lateral performance influencing factors. Then, a DDD procedure was developed and demonstrated by the design examples of a set of 8-, 12-, and 16-storey PT-CLTStrs. The corresponding simplified structural models were developed, and then a series of pushover and time-history dynamic analysis were conducted to calibrate the calculated structural performance objectives with the design targets of the DDD procedure. Finally, the empirical cumulative distribution functions (CDFs) of the maximum inter-storey drift (MaxISDR) were constructed. It is found that when the width of the PT CLT shear walls increases from 1.8 m to 3.0 m, the base shear at the drift of 2.0 % increases by twice accordingly. When the diameter of the PT strand increases from 15.2 mm to 34.6 mm, the base shear at the drift of 2.0 % increases by up to five times. Additionally, the MaxISDR limitation of the PT-CLTStrs is recommended as 2.2 % under the collapse prevention (CP) hazard level. The study results can serve as guidelines for the development of engineering design methods for the PT-CLTStrs.


2021 ◽  
Vol 11 (7) ◽  
pp. 3275
Author(s):  
Majid Yaseri Gilvaee ◽  
Massood Mofid

This paper investigates the influence of an opening in the infill steel plate on the behavior of steel trapezoidal corrugated infill panels. Two specimens of steel trapezoidal corrugated shear walls were constructed and tested under cyclic loading. One specimen had a single rectangular opening, while the other one had two rectangular openings. In addition, the percentage of opening in both specimens was 18%. The initial stiffness, ultimate strength, ductility ratio and energy dissipation capacity of the two tested specimens are compared to a specimen without opening. The experimental results indicate that the existence of an opening has the greatest effect on the initial stiffness of the corrugated steel infill panels. In addition, the experimental results reveal that the structural performance of the specimen with two openings is improved in some areas compared to the specimen with one opening. To that end, the energy dissipation capacity of the specimen with two openings is obtained larger than the specimen with one opening. Furthermore, a number of numerical analyses were performed. The numerical results show that with increasing the thickness of the infill plate or using stiffeners around the opening, the ultimate strength of a corrugated steel infill panel with an opening can be equal to or even more than the ultimate strength of that panel without an opening.


2020 ◽  
Vol 10 (17) ◽  
pp. 6015
Author(s):  
Byeonguk Ahn ◽  
Thomas H.-K. Kang ◽  
Su-Min Kang ◽  
Jang Keun Yoon

The design of a post-tensioned transfer plate is typically controlled by shear force—in particular, punching shear at the slab-column connection. To verify the accuracy of the separated model only for one floor currently used in the design of a post-tensioned transfer plate, results were compared to a complete model with multi-story building system for which two representative residential building plans were used to emulate physical structural systems. Punching shear stress for the separated model was calculated using the eccentric shear stress model presented in ACI 318. Punching shear stress was found to be overestimated in the separated model, given that interaction between transfer plates and upper shear walls cannot be reflected therein. Differences at column locations were also noted as the number of stories below the transfer floor increased. Consequently, the separated model is not recommended for design of post-tensioned transfer plates. A complete model is more suitable for more realistic and potential cost-effective design, through the inclusion of the interaction between transfer plates and upper shear walls.


2017 ◽  
Vol 82 (734) ◽  
pp. 579-588 ◽  
Author(s):  
Minori HIROSAWA ◽  
Hong LIU ◽  
Rado RAMAROZATOVO ◽  
Suguru SUZUKI ◽  
Susumu TAKAHASHI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document