scholarly journals Erratum for “Variability in Seismic Collapse Probabilities of Solid- and Coupled-Wall Buildings” by Nasser A. Marafi, Kamal A. Ahmed, Dawn E. Lehman, and Laura N. Lowes

2021 ◽  
Vol 147 (5) ◽  
pp. 08221003
Author(s):  
Nasser A. Marafi ◽  
Kamal A. Ahmed ◽  
Dawn E. Lehman ◽  
Laura N. Lowes
2019 ◽  
Vol 145 (6) ◽  
pp. 04019047 ◽  
Author(s):  
Nasser A. Marafi ◽  
Kamal A. Ahmed ◽  
Dawn E. Lehman ◽  
Laura N. Lowes

2020 ◽  
pp. 136943322097728
Author(s):  
Haoran Yu ◽  
Weibin Li

Reduced web section (RWS) connections and welded flange plate (WFP) connections can both effectively improve the seismic performance of a structure by moving plastic hinges to a predetermined location away from the column face. In this paper, two kinds of steel frames—with RWS connections and WFP connections—as well as different frames with welded unreinforced flange connections were studied through seismic fragility analysis. The numerical simulation was conducted by using multiscale FE modelling. Based on the incremental dynamic analysis and pushover analysis methods, probabilistic seismic demand analysis and seismic capability analysis were carried out, respectively. Finally, combined with the above analysis results, probabilistic seismic fragility analysis was conducted on the frame models. The results showed that the RWS connection and WFP connection (without double plates) have little influence on reducing the maximum inter-storey drift ratio under earthquake action. RWS connections slightly reduce the seismic capability in non-collapse stages and improve the seismic collapse resistance of a structure, which exhibits good structural ductility. WFP connections can comprehensively improve the seismic capability of a structure, but the seismic collapse resistance is worse than that of RWS connections when the structure has a large number of storeys. The frame with WFP connections has a lower failure probability at every seismic limit state, while the frame with RWS connections sacrifices some of its structural safety in non-collapse stages to reduce the collapse probability.


Author(s):  
Jin Zhou ◽  
Zhelun Zhang ◽  
Tessa Williams ◽  
Sashi K. Kunnath

AbstractThe development of fragility functions that express the probability of collapse of a building as a function of some ground motion intensity measure is an effective tool to assess seismic vulnerability of structures. However, a number of factors ranging from ground motion selection to modeling decisions can influence the quantification of collapse probability. A methodical investigation was carried out to examine the effects of component modeling and ground motion selection in establishing demand and collapse risk of a typical reinforced concrete frame building. The primary system considered in this study is a modern 6-story RC moment frame building that was designed to current code provisions in a seismically active region. Both concentrated and distributed plasticity beam–column elements were used to model the building frame and several options were considered in constitutive modeling for both options. Incremental dynamic analyses (IDA) were carried out using two suites of ground motions—the first set comprised site-dependent ground motions, while the second set was a compilation of hazard-consistent motions using the conditional scenario spectra approach. Findings from the study highlight the influence of modeling decisions and ground motion selection in the development of seismic collapse fragility functions and the characterization of risk for various demand levels.


Author(s):  
Pouria Bahmani ◽  
John W. van de Lindt ◽  
Gary L. Mochizuki ◽  
Mikhail Gershfeld ◽  
Steven E. Pryor

Sign in / Sign up

Export Citation Format

Share Document