Seismic Collapse Capacity–Based Evaluation and Design of Frame Buildings with Viscous Dampers Using Pushover Analysis

2015 ◽  
Vol 141 (6) ◽  
pp. 04014153 ◽  
Author(s):  
Mohammadjavad Hamidia ◽  
Andre Filiatrault ◽  
Amjad Aref
2020 ◽  
pp. 136943322097728
Author(s):  
Haoran Yu ◽  
Weibin Li

Reduced web section (RWS) connections and welded flange plate (WFP) connections can both effectively improve the seismic performance of a structure by moving plastic hinges to a predetermined location away from the column face. In this paper, two kinds of steel frames—with RWS connections and WFP connections—as well as different frames with welded unreinforced flange connections were studied through seismic fragility analysis. The numerical simulation was conducted by using multiscale FE modelling. Based on the incremental dynamic analysis and pushover analysis methods, probabilistic seismic demand analysis and seismic capability analysis were carried out, respectively. Finally, combined with the above analysis results, probabilistic seismic fragility analysis was conducted on the frame models. The results showed that the RWS connection and WFP connection (without double plates) have little influence on reducing the maximum inter-storey drift ratio under earthquake action. RWS connections slightly reduce the seismic capability in non-collapse stages and improve the seismic collapse resistance of a structure, which exhibits good structural ductility. WFP connections can comprehensively improve the seismic capability of a structure, but the seismic collapse resistance is worse than that of RWS connections when the structure has a large number of storeys. The frame with WFP connections has a lower failure probability at every seismic limit state, while the frame with RWS connections sacrifices some of its structural safety in non-collapse stages to reduce the collapse probability.


2019 ◽  
Vol 10 (2) ◽  
pp. 18-31
Author(s):  
Radhikesh Prasad Nanda ◽  
Subhrasmita Majumder

In the present article, the performance of base-isolated infilled frames is studied analytically. The seismic performances of four RC buildings, namely RC bare frame without isolator, RC bare frame with isolator, RC infilled frame without isolator, and RC infilled frame with isolator are analysed. The results show a decrease in base shear value and increase in time period due to base isolated buildings, while these parameters are reversely affected due to infills. The decrease in story drift for the base isolated buildings is in phase while considering infill. Also, it can be inferred that plastic hinge formation is greatly affected by the introduction of masonry infill. Hence, relying on base isolation without considering infills may underestimate the seismic performance.


2010 ◽  
Vol 19 (4) ◽  
pp. 421-438 ◽  
Author(s):  
H. Kit Miyamoto ◽  
Amir S. J. Gilani ◽  
Akira Wada ◽  
Christopher Ariyaratana

2013 ◽  
Vol 671-674 ◽  
pp. 782-785
Author(s):  
Bin He ◽  
Jin Lai Pang ◽  
Cheng Qing Liu

For the lack of research in the longitudinal frame of prefabricated structure for its weak lateral stiffness, pushover analysis is conducted to evaluate the seismic performance of a fabricated concrete frame. Based on case study, the strengthening strategies with viscous dampers are analyzed. In view of the undesirable drift distribution and failure mode in the existing building, it is believed that arrangement of dampers should be designed to attain a uniform drift distribution. Based on the nonlinear time history analysis method, the strategy of damper allocation in vertical direction of the structure is investigated .Results indicate that a proper design might be attained based on the property of existing system, leading to a uniform drift distribution and better seismic performance.


2014 ◽  
Vol 30 (2) ◽  
pp. 767-794 ◽  
Author(s):  
Michalis Fragiadakis ◽  
Dimitrios Vamvatsikos ◽  
Mark Aschheim

The applicability of nonlinear static procedures for estimating the seismic demands of typical regular RC moment-resisting frames is evaluated. This work, conducted within the framework of the ATC-76-6 project, shows the degree to which nonlinear static methods can characterize global and local response demands vis-à–vis those determined by nonlinear dynamic analysis for three RC moment-frame buildings. The response quantities (engineering demand parameters) considered are peak story displacements, story drifts, story shears, and floor overturning moments. The single-mode pushover methods evaluated include the N2 and the ASCE-41 coefficient methods. Multi-modal pushover methods, such as modal pushover analysis and the consecutive modal pushover method, were also evaluated. The results indicate that the relatively good performance of the single-mode methods observed for low-rise buildings rapidly deteriorates as the number of stories increases. The multi-modal techniques generally extend the range of applicability of pushover methods, but at the cost of additional computation and without ensuring the reliability of the results.


Sign in / Sign up

Export Citation Format

Share Document