soft story
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 44)

H-INDEX

7
(FIVE YEARS 2)

CONSTRUCTION ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 93-101
Author(s):  
Saffuan Wan Ahmad ◽  
Muhammad Aimran Amzar Kamarudin ◽  
Wan Aniq Ridhwan Wan Ariffin

On the 5th June 2015, an earthquake hit Ranau, Sabah with a magnitude of 6.0 that caused 18 casualties and several injuries are one of the examples that show Malaysia is not safe from any seismic event. Most of the structure in Malaysia was designed not to include seismic action.  Furthermore, an area that has a high density of population such as in the central region (Klang valley) and several main cities in Malaysia has less available land to build landed housing and uses high-rise apartments as an alternative. High-rise buildings that are normally having problems with soft story mechanisms and plan irregularity which could lead to severe damage when earthquakes happen. This study aims to observe the response of high-rise buildings when under different earthquakes in the presence of shear walls. To achieve this objective two models were modelled and analyzed by using ETABS software, the one with a shear wall and the one with no shear wall. The methods used in this study were the response spectrum method and time-history analysis. In the end, the parameters observed were base shear, story stiffness, story drift, and story displacement. The observations highlighted that the effect of earthquake intensities shows a significant effect. The acquired results indicated that the building with the shear wall is more resistant and strong structures as compared to buildings without shear wall when undergoing seismic analysis.


Author(s):  
Syed Jaleel

Abstract: In late decades, shear walls and tube structures are the most proper basic structures, which have made the stature of solid structures be taken off. In this way, ongoing RC tall structures would have more confounded auxiliary conduct than previously. Here in this paper; we will examine the auxiliary parts of one of the tallest RC structures, situated in Hyderabad seismic zone, with 15 stories where shear wall framework with sporadic openings are used under both horizontal and gravity stacks, Because of utilitarian necessities, for example, entryways, windows, and different openings, a shear wall in building contains numerous openings. The size and area of openings may fluctuate for building and utilitarian perspective. Hence this examination is done on 15 story outline wall building utilizing Response range investigation by utilizing ETABS V 9.7.4. The models are examined with increment in level of shear mass of 15%, 18%, 28% through and through story. Keywords: Structural forms, Irregular openings, Drift, Shear, and Moments


2021 ◽  
Vol 27 (67) ◽  
pp. 1243-1248
Author(s):  
Takahiko KATADA ◽  
Yuji MIYAZU ◽  
Shota KAGEYAMA ◽  
Takuro MORI ◽  
Hiroshi ISODA
Keyword(s):  

Author(s):  
Hala Tawfek Hasan, Khaled Al-Homsi Hala Tawfek Hasan, Khaled Al-Homsi

This study discusses the effect of metallic yielding dampers (ADAS) on the behavior of reinforcement concrete buildings when exposed to seismic shocks. The objective of the study is to reduce the negative impacts on the main structural elements (plastic, fall) by using the technique of metallic dampers. The method of metallic dampers is one of the modern ways based on the principle of dissipating the resulting energy from the seismic shock and reducing the needed energy in the main structural elements of the building to keep it in a flexible state. This technique also provides a controlling mechanism for story displacement, the handling of the soft story mechanic and the torsion mechanic of the buildings. In this study, the effect of the addition of ADAS dampers on the construction behavior was observed in terms of (building period, base shear, roof displacement, roof acceleration, story displacement, dissipative energy). Based on the preceding, this study will give the possibility of predicting the behavior of the building when using ADAS metal dampers in the reinforced concrete structures with their distribution methods.


Author(s):  
Shilpa S and Navith K B

Open ground storey or soft storey is a typical feature in multistory structures in urban areas. This open storey is provided to accommodate parking, reception lobbies, office, communication hall etc. Many of structure having soft storey suffered major damage and collapsed in recent earthquakes. During an earthquake, because of variation in stiffness in soft story and its adjacent floors the inter story drift can occur and the lateral forces cannot be well distributed along the height of building. Lateral forces concentrate on soft story causes large displacement. In this work, an attempt has been made to observe the behavior of gradual decrease in stiffness of building, by using different types of infill material. This work discusses Optimum Earthquake response of tall buildings by response spectrum method as per IS 1893:2002 (Part- I) in ETAB’S software. Seismic parameters like storey stiffness and storey displacement are checked out.


2021 ◽  
Vol 7 (3) ◽  
pp. 151
Author(s):  
Başak Zengin

Since the ground floor of most of the buildings in our country is designed as a shop or ground floor (in the buildings created as a workplace), there is very little infill wall ratio on the ground floors due to architectural and functional reasons, and some of them do not even exist at all. However, infill walls significantly increase the horizontal rigidity and strength of the structure, thus causing a decrease in the period value that determines the earthquake loads that will affect the structure. However, the infill wall meets the first destructive forces of the earthquake, and during this time, it cracks and absorbs some of the earthquake energy. The structural system elements of the building (columns and shear walls) start to meet the earthquake forces only when the infill walls are damaged and fail. In this direction, the aim of this study is to investigate to what extent the amount of infill wall on the ground floor affects the period of the building, and whether there are soft storey irregularities in the building according to the change in the amount of infill wall on the ground floor. In this study, while there are infill walls on all floors and all axes of buildings of various heights (3, 6, 9 and 11 floors), the amount of infill walls in the x and y directions on the ground floors is reduced to a certain extent, and many models are created until the ground floor is completely without infill walls. All these models created were analyzed with the support of the SAP2000 program, and the period values were determined and examined according to the soft storey problems and compared with the case of the entire building with and without infill walls. In addition, it was examined whether the period formulas determined as a result of the studies and taking into account the infill wall give realistic results for the situation examined in this study.


Author(s):  
Siavash Sadeghinezhad ◽  
Ali Kheyroddin ◽  
Alireza Mortezaei

Non-ductile reinforced concrete frames are commonly found in older buildings in many parts of the world. These structures designed for gravity loads, have limited lateral strength and ductility, are prone to excessive one-way lateral movement and soft-story mechanism. This paper focuses on the retrofit of an existing reinforced concrete frame, using steel X-braces by direct internal connection method. The main purpose is the analytical study of general behavior and response of large scale vulnerable frames. An experimental study was used to validate the numerical modeling performed in ABAQUS. Next the base samples were retrofitted with X-braces and four proposed direct internal connection methods. Furthermore, in a separate parametric studies, the effect of frame type, bracing cross-section dimensions and gusset plate shape were investigated. The results indicated that the stiffness, bearing capacity and absorbed energy of the reinforced concrete frame by using steel X-braces increases up to 4, 2.3 and 1.5 times, respectively. Moreover, bracing acts like the first defense system against lateral loads, such as structural fuse with its yield, increases the amount of energy dissipation. It also removes the plastic hinges by reducing the ultimate displacement and stress of lateral load in the panel zone.


2021 ◽  
Vol 183 ◽  
pp. 106736
Author(s):  
Hamidreza A. Yazdi ◽  
M. Javad Hashemi ◽  
Riadh Al-Mahaidi ◽  
Emad Gad

Sign in / Sign up

Export Citation Format

Share Document