Progressive Collapse of Flat Plate Substructures Initiated by Upward and Downward Punching Shear Failures of Interior Slab–Column Joints

2022 ◽  
Vol 148 (2) ◽  
Author(s):  
Xuekang Guo ◽  
Zhi Yang ◽  
Yi Li ◽  
Hong Guan ◽  
Xinzheng Lu ◽  
...  
2014 ◽  
Vol 638-640 ◽  
pp. 1445-1448
Author(s):  
Hui Zhong Xue ◽  
Hong Guan ◽  
Yi Li

To investigate progressive collapse behavior of reinforced concrete (RC) flat plate structures, a reliable and efficient numerical approach is developed in this study using spring connection modelling. This connection unit aims to simulate complicate punching shear behavior at critical regions surrounding the columns. Five springs are used as the connection elements: two for flexural and integrity steel bars and three for concrete contributions. The flexural and integrity steel bars embedded in the columns are modeled explicitly, which enables the model to present the structural behavior post punching shear failure. Bending and shear actions are represented by two concrete springs. The third concrete spring is assigned axial action property to restrain two end nodes of the connection on the model. In particular, the punching shear spring controls the connection unit when punching shear failure occurs. To apply the connection unit, the regions of slab-column connections are partitioned from the slab regions according to the critical shear surfaces. Then the connection unit links two corresponding nodes on the two edges formed from the partition. A physical experiment of a RC flat plate substructure under progressive collapse is simulated. Result comparison demonstrates that the numerical model has the capability to capture the structural behavior in progressive collapse. However, further improvement of the modelling technique is necessary to enhance numerical accuracy.


2018 ◽  
Vol 2018 (04) ◽  
pp. 101-115
Author(s):  
Suha Rasheed Abass ◽  
◽  
Haitham Jameel Abd ◽  

2016 ◽  
Vol 845 ◽  
pp. 166-174
Author(s):  
I. Ketut Sudarsana

Column slab connections in flat plate structures are critical part of the structure. Punching shear damage to the connections may occur during construction or post moderate earthquakes. To avoid demolishing overall structures with such damage, connections may be repaired to restore the original strength of the structures. This paper presents behavior of repaired edge column slab connections using normal concrete and non-shrinkable (CAH) concrete. Four edge connections of flat plate structure after failure were repaired using normal and non-shrinkable (CAH) concrete respectively for two connections. The connections were re-tested to fail under combined shear and moment. The results show that bonding agent Sika Top Armatec 110 Epocem gave an excellent bond between the old concrete and the repaired concrete in the tests of repaired edge column slab connection as there are no cracks observed along the concrete interface. The edge connections repaired using normal concrete can have similar strength and stiffness as the original connections when good curing is provided The edge connections repaired using an expansive CAH concrete exhibited less strength and stiffness compared to the original edge connections due to lack of surface confinement. The Superplasticizer used in CAH concrete (Mix. B) improves concrete expansion but reduce the strength of the repaired connections


2012 ◽  
Vol 9 (1) ◽  
pp. 107-113
Author(s):  
Sung Woo Shin ◽  
Seon Woong Lee ◽  
Jong Keun Kim ◽  
Sun Ho Kim

Sign in / Sign up

Export Citation Format

Share Document