Controlling the Bullwhip Effect of Supply Chain System Based on the Stability Analysis

ICLEM 2010 ◽  
2010 ◽  
Author(s):  
Juan Feng ◽  
Haiyan Wang
Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Yongchang Wei ◽  
Fangyu Chen ◽  
Feng Xiong

The horizontal interaction between retailers, coupled with replenishment rules and time delays, makes the dynamics in supply chain systems highly complicated. This paper aims to explore the impacts of lateral transshipments on the stability, bullwhip effect, and other performance measurements in the context of a two-tiered supply chain system composed of one supplier and two retailers. In particular, we developed a unified discrete-time state space model to address two different scenarios of placing orders. Analytical stability results are derived, through which we found that inappropriate lateral transshipment policies readily destabilize the supply chain system. Moreover, the lead time of lateral transshipments further complicates the stability problem. Theoretical results are validated through simulation experiments and the influences of system parameters on performance measures are investigated numerically. Numerical simulations show that lateral transshipments help improve the customer service level for both retailers. It is also interesting to observe that the demand of the two retailers can be satisfied even if only one retailer places orders from the upstream supplier.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Yongchang Wei ◽  
Fangyu Chen ◽  
Hongwei Wang

This paper presents some analytical results on production and order dynamics in the context of a discrete-time VMI supply chain system composed of one retailer and one manufacturer. We firstly derive the lower bound and upper bound on the range of inventory fluctuations for the retailer under unknown demand. We prove that the production fluctuations can be interestingly smoothed and stabilized independent of the delivery frequency of the manufacturer used to satisfy the retailer’s demand, even if the retailer subsystem is unstable. The sufficient and necessary stability condition for the whole supply chain system is obtained. To further explore the production fluctuation problem, the bullwhip effect under unknown demand is explored based on a transfer function model with the purpose of disclosing the influences of parameters on production fluctuations. Finally, simulation experiments are used to validate the theoretical results with respect to inventory and production fluctuations.


2021 ◽  
Vol 11 (20) ◽  
pp. 9744
Author(s):  
Jing Li ◽  
Yafei Song

As the interaction between companies becomes more and more complex, the problems of asymmetric information, weak traceability, and low collaboration efficiency in the traditional centralized supply chain are becoming increasingly prominent. To solve these problems, this paper designs a supply chain system based on blockchain. With the help of trade chain and information chain platforms, an overall framework of the supply chain system is constructed. By formulating platform interaction rules, the system information exchange format is standardized to ensure the stability and efficiency of system interaction. Smart contracts are used to manage supply chain system transactions and information interactions to achieve efficient and convenient information sharing, ensuring the security and reliability of supply chain information. The comprehensive performance of the system is evaluated through experiments. Experimental results indicate that while the system realizes the basic functions of the supply chain, it can promote the sharing of information between participants and improve its efficiency.


2018 ◽  
Vol 144 ◽  
pp. 05003
Author(s):  
Ayush Shrivastava ◽  
Raghavendra Kamath ◽  
Himanshu Sharma ◽  
Ajitesh Gogoi

A study has been conducted to understand the effect of bullwhip phenomenon in a supply chain system. The hypothetical data collected from the study is used to make a model which can be used to simulate the operation of the system with moderate complexity. System dynamics approach is used to create an open loop system. The phenomenon used is slightly modified and empirically analysed to bring down its adverse effect on the system. The results obtained graphically are emphasising the effect of bullwhip on the various levels of the supply chain system.


Author(s):  
Qiuxiang Li ◽  
Xingli Chen ◽  
Yimin Huang

This paper studies a low-carbon dual-channel supply chain in which a manufacturer sells products through the direct channel and traditional channel, and a retailer sells products through the traditional channel. The manufacturer considers carbon emission reduction and has fairness concern behavior. The retailer provides sales service in the traditional channel and considers fairness concern behavior. The objective of this paper is to analyze the effects of different parameter values on the price stability and utility of the supply chain system emphatically using 2D bifurcation diagram, parameter plot basin, the basins of attraction, chaos attractor and sensitivity to the initial value, etc. The results find that the retailer’s fairness concern behavior shrinks the stability of the supply chain system more than that of the manufacturer’s fairness concern behavior. The system stability region decreases with the increase of carbon emission reduction level and the retailer’s fairness concern. The customers’ preference for the direct channel decreases the stable range of the direct channel, while it enlarges the stable range of the traditional channel. The supply chain system enters into chaos through flip bifurcation with the increase of price adjustment speed. In a stable state, the manufacture improving customer’s preference for the direct channel and the retailer choosing the appropriate fairness concern level can achieve the maximum utility separately. In a chaotic state, the average utilities of the manufacturer and retailer all decline, while that of the retailer declines even more. By selecting appropriate control parameter, the low-carbon dual-channel supply chain system can return to a stable state from chaos again. The research of this paper is of great significance to price decisions of participants and supply chain operation management.


Entropy ◽  
2018 ◽  
Vol 20 (7) ◽  
pp. 543 ◽  
Author(s):  
Yimin Huang ◽  
Qiuxiang Li

Considering consumers’ attitudes to risks for probabilistic products and probabilistic selling, this paper develops a dynamic Stackelberg game model of the supply chain considering the asymmetric dual-channel structure. Based on entropy theory and dynamic theory, we analyze and simulate the influences of decision variables and parameters on the stability and entropy of asymmetric dual-channel supply chain systems using bifurcation, entropy diagram, the parameter plot basin, attractor, etc. The results show that decision variables and parameters have great impacts on the stability of asymmetric dual-channel supply chains; the supply chain system will enter chaos through flip bifurcation or Neimark–Sacker bifurcation with the increase of the system entropy, and thus the system is more complex and falls into a chaotic state, with its entropy increased. The stability of the system can become robust with the increase of the probability that product a becomes a probabilistic product, and it weakens with the increase of the risk preference of customers for probabilistic products and the relative bargaining power of the retailer. A manufacturer using the direct selling channel may obtain greater profit than one using traditional selling channels. Using the method of parameter adjustment and feedback control, the entropy of the supply chain system will decline, and the supply chain system will fall into a stable state. Therefore, in the actual market of probabilistic selling, the manufacturers and retailers should pay attention to the parameters and adjustment speed of prices and ensure the stability of the game process and the orderliness of the dual-channel supply chain.


Sign in / Sign up

Export Citation Format

Share Document