Cylindrical Cavity Expansion Analysis of Variable Penetration Rate Cone Penetration Testing Using an Anisotropic Soil Model

2011 ◽  
Author(s):  
R. A. Jaeger ◽  
J. T. DeJong ◽  
R. W. Boulanger
2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Yanbin Fu ◽  
Sizhan Zhang ◽  
Guiyang Lv ◽  
Kaihang Han

Because of the strong structural and sensitive behavior, the properties of marine soft soil change greatly when subjected to external disturbances, which leads to great difficulty in reflecting its real mechanical properties in the laboratory soil tests. The piezocone penetration test (CPTU) is one of the main technologies for in situ testing of geotechnical engineering. CPTU has the advantages of being fast and convenient, no sampling, low disturbance to soil, large amount of data, and reliable testing. The determination of the overconsolidation ratio (OCR) based on the CPTU results can solve the problems of soil disturbance and stress release, which occur during the consolidation test in the laboratory. However, there are still some problems such as lack of strict theoretical analysis of penetration mechanism and incomplete interpretation theory of in situ test parameters of CPTU. In this paper, the CPTU cone head is assumed to be hemispherical considering the penetration mechanism of CPTU. Moreover, the compaction modes of the CPTU probe penetrating into soil are adopted as spherical and cylindrical cavity expansion modes, respectively. The ultimate expansion pressures of the probe penetrating into soil under the spherical and cylindrical cavity expansion modes are first obtained by virtue of the theory of cavity expansion. Then, two prediction methods for OCR considering the roughness and penetration rate of the cone are proposed by combining the ultimate expansion pressures of the probe penetrating the approximate closed solution of cavity expansion in the modified Cambridge model, which is suitable for predicting the OCR of marine soft clay. Finally, to verify the reliability of the two proposed prediction methods, comparisons with the in situ CPTU tests of marine soft clay in two coastal areas and two existing prediction methods are made. The comparison results show that predictions of OCR of marine soft clay in this paper are close to Wayne’s method and more accurate than Chanmee’s method since the factors such as cone roughness and penetration rate are considered in the new proposed prediction methods. In order to improve the applicability in different cases of the OCR predictions, the average values of the two proposed methods are recommended as the reference value for the OCR of marine soft soil.


2014 ◽  
Vol 60 (219) ◽  
pp. 83-93 ◽  
Author(s):  
Adrian McCallum

AbstractCommercial cone penetration testing (CPT) equipment was adapted to allow penetrative testing in hard polar firn to depths of 10 m. The apparatus is hydraulically driven, rate-controllable and able to penetrate firn with a resistance of 10 MPa. It can be mounted on many types of typical polar vehicles, requiring connection to only hydraulics and 12 V electricity. Data recorded include both cone tip resistance and sleeve friction, a parameter not previously examined through such testing. This paper describes the development and calibration of the equipment and examines factors including snow density, penetration rate and cone size and shape that are shown to affect CPT interpretation. CPT can be used efficiently in polar environments to potentially provide estimates of physical parameters in hard firn to substantial depth.


2021 ◽  
pp. 204141962110272
Author(s):  
Chaomei Meng ◽  
Dianyi Song ◽  
Qinghua Tan ◽  
Zhigang Jiang ◽  
Liangcai Cai ◽  
...  

Cellular steel-tube-confined concrete (CSTCC) targets show improved anti-penetration performance over single-cell STCC targets due to the confinement effect of surrounding cells on the impacted cell. Dynamic finite cylindrical cavity-expansion (FCCE) models including radial confinement effect were developed to predict the depth of penetration (DOP) for CSTCC targets normally penetrated by rigid sharp-nosed projectiles, and stiffness of radial confinement was achieved with the elastic solution of infinite cylindrical shell in Winkler medium. Steady responses of dynamic FCCE models were obtained on the assumption of incompressibility of concrete, failure of comminuted zone with Heok–Brown criterion and two possible response modes of the confined concrete in the impacted cell. Furthermore, a DOP model for CSTCC targets normally impacted by rigid projectiles was also proposed on the basis of the dynamic FCCE approximate model. Lastly, relevant penetration tests of CSTCC targets normally penetrated by 12.7 mm armor piecing projectile (APP) were taken as examples to validate the dynamic FCCE models and the corresponding DOP model. The results show that the DOP results based on dynamic FCCE model agree well with those of the CSTCC targets normally penetrated by rigid conical or other sharp-nosed projectiles.


Sign in / Sign up

Export Citation Format

Share Document