Probability Distribution of the Maximum Wave Height along a Sea Wall with Finite Width

Author(s):  
Akira Kimura ◽  
Takao Ohta
1988 ◽  
Vol 1 (21) ◽  
pp. 48 ◽  
Author(s):  
Akira Kimura

The probability distribution of the maximum run of irregular wave height is introduced theoretically. Probability distributions for the 2nd maximum, 3rd maximum and further maximum runs are also introduced. Their statistical properties, including the means and their confidence regions, are applied to the verification of experiments with irregular waves in the realization of a "severe sea state" in the test.


Author(s):  
Germa´n Rodri´guez ◽  
Mercedes Pacheco ◽  
Carlos Guedes Soares

The probability distribution of the maximum wave height in a sea state is examined in terms of the spectral peakedness and the sea state duration. The study is based on the analysis of numerically simulated gaussian wave records with given target spectra to fulfill the long duration and stationarity jointly required conditions, seldom found in nature. Results indicate a clear dependence of the probability distribution structure and location on the record length and the spectral shape.


Author(s):  
Germán Rodríguez ◽  
Carlos Guedes Soares ◽  
José Carlos Nieto Borge

Location, dispersion, and asymmetry variability of the probability distribution of the maximum wave height from a set of N individual wave heights are examined in terms of the spectral peakedness and the duration of the sea states through the use of robust statistical parameters. The capability of various empirical and theoretical models to reproduce the observed features is also explored. The study is based on the analysis of numerically simulated Gaussian wave records with given target spectra to fulfill the long duration and stationarity jointly required conditions, seldom found in nature. Results indicate a clear dependence of the probability distribution structure and location on the record length and the spectral narrowness. Furthermore, it is observed that theoretical models based on the statistical independence of individual waves in a sea state and the knowledge of its population distribution assumptions are not able to characterize the structure and variations induced by these factors on the empirical distribution. However, the observed features can be reproduced by a simple empirical model depending on the sample quartiles.


2005 ◽  
Vol 127 (4) ◽  
pp. 340-344 ◽  
Author(s):  
Germán Rodríguez ◽  
Mercedes Pacheco ◽  
C. Guedes Soares

The probability distribution of the maximum wave height in a sea state is examined in terms of the spectral peakedness and the sea state duration. The study is based on the analysis of numerically simulated Gaussian wave records with given target spectra to fulfill the long duration and stationarity jointly required conditions, seldom found in nature. Results indicate a clear dependence of the probability distribution structure and location on the record length and the spectral shape.


1996 ◽  
Vol 118 (4) ◽  
pp. 284-291 ◽  
Author(s):  
C. Guedes Soares ◽  
A. C. Henriques

This work examines some aspects involved in the estimation of the parameters of the probability distribution of significant wave height, in particular the homogeneity of the data sets and the statistical methods of fitting a distribution to data. More homogeneous data sets are organized by collecting the data on a monthly basis and by separating the simple sea states from the combined ones. A three-parameter Weibull distribution is fitted to the data. The parameters of the fitted distribution are estimated by the methods of maximum likelihood, of regression, and of the moments. The uncertainty involved in estimating the probability distribution with the three methods is compared with the one that results from using more homogeneous data sets, and it is concluded that the uncertainty involved in the fitting procedure can be more significant unless the method of moments is not considered.


2008 ◽  
pp. 127-138 ◽  
Author(s):  
Gerrit Burgers ◽  
Frits Koek ◽  
Hans de Vries ◽  
Martin Stam

Author(s):  
Riko Morita ◽  
Taro Arikawa

Along with the 2011 Great East Japan Earthquake (Mw 9.0), a huge tsunami exceeding a maximum wave height of 15 m occurred. Many people and objects were destroyed and drifted by the tsunami. In addition, these debris were transported to various places that could not be predicted, resulting in significant secondary damage and increase in the number of missing. Therefore, in order to reduce the amount of damage, it is important to predict the behavior and landing points of person after set adrift in a tsunami. The best way to increase the rescue rate is to predict in advance the area that people will be drifted, and prioritize searching operations at that area. Although there has been considerable number of studies which handle the drifting behavior of containers and ships (e.g., Kaida et al., 2016), the prediction of drifting areas focusing on people has not been conducted. Moreover, a drifting area prediction method has not yet been established. The purpose of this study is to conduct a hydraulic experiment using a flat water tank, and observe the drifting area of the drifting object. Then, we conducted numerical calculations and compared simulation results with the experimental ones.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/1yhKuodhCbg


2019 ◽  
Vol 8 (2) ◽  
pp. 55
Author(s):  
Ary Afriady ◽  
Tasdik Mustika Alam ◽  
Mochamad Furqon Mustika Azis Ismail

Analisis data angin dilakukan untuk meramalkan dan menentukan karakteristik gelombang laut di perairan Pulau Natuna. Data angin yang digunakan dalam penelitian ini berasal dari National Centers for Environmental Prediction (NCEP) selama 10 tahun dari tahun 2009 sampai dengan tahun 2018. Metoda yang digunakan untuk estimasi tinggi, periode dan arah gelombang laut yang dibangkitkan oleh angin adalah metode Svedrup, Munk dan Bretschneider (SMB). Hasil perhitungan peramalan karakteristik gelombang diperoleh bahwa pembentukan gelombang didominasi oleh arah yang berasal dari timur laut dan terjadi pada musim barat dan musim peralihan 1. Adapun pada musim timur dan peralihan, arah dominan gelombang masing-masing berasal dari selatan dan barat daya. Tinggi gelombang maksimum 1,0-1,4 m sering terjadi pada musim musim timur, adapun tinggi gelombang minimum 0,2-0,6 m dominan terjadi pada musim musim peralihan. Periode gelombang dominan ditemukan pada kisaran 7-9 detik yang terjadi pada tiap musim.  The analysis of wind data has been done to forecast and determine the characteristic of the ocean wave in Natuna Island waters. The wind data in this study came from the National Centers for Environmental Prediction (NCEP) for a period of 10 years from 2009 to 2018. The method to estimate wave height, wave period, and wave direction generated by wind is Sverdrup, Munk dan Bretschneider (SMB) system. The results of wave forecasting analysis show that the formation of the wave is mainly originated from the northeast which occurs during the west and first transition season. As for the east and second transition season, the origin of wave formation coming from the south and southwest, respectively. The maximum wave height of 1.0-1.4 m frequently occurs during the east monsoon, while the minimum wave height. The dominant wave period is found in the range of 7-9 seconds, which occurs in every season. 


1974 ◽  
Vol 1 (14) ◽  
pp. 100 ◽  
Author(s):  
Yoshimi Goda

A proposal is made for new wave pressure formulae, which can be applied for the whole ranges of wave action from nonbreaking to postbreaking waves with smooth transition between them. The design wave height is specified as the maximum wave height possible at the site of breakwater. The new formulae as well as the existing formulae of Hiroi, Sainflou, and Minikin have been calibrated with the cases of 21 slidings and 13 nonslidings of the upright sections of prototype breakwaters. The calibration establishes that the new formulae are the most accurate ones.


Sign in / Sign up

Export Citation Format

Share Document