A Simple Approach to Estimating Dynamic Moduli from Resilient Moduli for the Mechanistic Empirical Design of Asphalt Pavements

Author(s):  
Aboelkasim Diab ◽  
Zhanping You
Author(s):  
Zhanping You ◽  
Sanjeev Adhikari ◽  
Shu Wei Goh ◽  
Qingli Dai

Author(s):  
Kevin Alland ◽  
Julie M. Vandenbossche ◽  
John W. DeSantis ◽  
Mark B. Snyder ◽  
Lev Khazanovich

Bonded concrete overlays of asphalt pavements (BCOA) consist of a concrete overlay placed on an existing asphalt or composite pavement. This technique is intended as a cost-effective rehabilitation solution for marginally distressed in-service asphalt or composite pavements. BCOA with panel sizes between 4.5 ft and 8.5 ft have become popular as they reduce curling stresses while keeping the longitudinal joints out of the wheelpath. The BCOA-ME (mechanistic empirical) design procedure and Pavement ME short jointed plain concrete pavement (SJPCP) module can both be used to design BCOA with mid-size panels. However, these design procedures differ in the assumptions used to develop the mechanistic computational model, fatigue models used to predict failure, treatment of environmental conditions, estimate of asphalt stiffness, consideration of structural fibers, the application of traffic loading, and the calibration process. This results in the procedures producing different overlay thicknesses and predicted distresses. The strengths and limitations of each procedure are evaluated and comparisons are made between the design thicknesses obtained from them.


2020 ◽  
Vol 15 (1) ◽  
pp. 161-186
Author(s):  
Csaba Tóth ◽  
Péter Primusz

Certain elements of the currently used Hungarian pavement design method are based on the mechanistic-empirical pavement design principles, although they are not always readily implemented in practice. When designing a new pavement structure, it is only possible to select predetermined composition from a catalogue. The use of the Hungarian design catalogue is unquestionably comfortable, but nowadays special requirements (e.g. economy, sustainability) have been formulated as well. Those requirements increasingly call for the development of a method that can be used under Hungarian conditions, which can provide for the employment of various material properties. Instead of offering a predefined solution it needs to provide a useful tool for designers to enable realistic comparisons of engineering alternatives. This paper introduces the results of an ongoing research that aims to provide an alternative procedure for the design of newly constructed asphalt pavements. It establishes the framework for better characterization of the material properties of the natural subgrade and bound pavement layers compared to the utilization of predetermined designs. It also provides opportunity to consider local, environmental, geographical and other conditions and innovative building and technology capabilities.


Author(s):  
E. A. Kenik ◽  
J. Bentley

Cliff and Lorimer (1) have proposed a simple approach to thin foil x-ray analy sis based on the ratio of x-ray peak intensities. However, there are several experimental pitfalls which must be recognized in obtaining the desired x-ray intensities. Undesirable x-ray induced fluorescence of the specimen can result from various mechanisms and leads to x-ray intensities not characteristic of electron excitation and further results in incorrect intensity ratios.In measuring the x-ray intensity ratio for NiAl as a function of foil thickness, Zaluzec and Fraser (2) found the ratio was not constant for thicknesses where absorption could be neglected. They demonstrated that this effect originated from x-ray induced fluorescence by blocking the beam with lead foil. The primary x-rays arise in the illumination system and result in varying intensity ratios and a finite x-ray spectrum even when the specimen is not intercepting the electron beam, an ‘in-hole’ spectrum. We have developed a second technique for detecting x-ray induced fluorescence based on the magnitude of the ‘in-hole’ spectrum with different filament emission currents and condenser apertures.


2004 ◽  
Vol 49 (4) ◽  
pp. 401-403
Author(s):  
Richard B. Makover

CICTP 2020 ◽  
2020 ◽  
Author(s):  
Yan Li ◽  
Yanlong Han ◽  
Yuanbo Cao ◽  
Jiupeng Zhang ◽  
Fuyu Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document