scholarly journals Bearing Capacity of the High-Rise Pile Cap Foundation for Offshore Wind Turbines

Author(s):  
Wen-Gang Qi ◽  
Jing-Kui Tian ◽  
Hong-You Zheng ◽  
Hai-Yan Wang ◽  
Jing Yang ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Ruiqing Lang ◽  
Run Liu ◽  
Jijian Lian ◽  
Hongyan Ding

Because offshore wind turbines are high-rise structures, they transfer large horizontal loads and moments to their foundations. One of the keys to designing a foundation is determining the sensitivities and laws affecting its load-bearing capacity. In this study, this procedure was carried out for a new high-rise cap pile group foundation adapted to the loading characteristics of offshore wind turbines. The sensitivities of influential factors affecting the bearing properties were determined using an orthogonal test. Through a combination of numerical simulations and model tests, the effects of the inclination angle, length, diameter, and number of side piles on the vertical bearing capacity, horizontal bearing capacity, and bending bearing capacity were determined. The results indicate that an increase in the inclination angle of the side piles will increase the vertical bearing capacity, horizontal bearing capacity, and bending bearing capacity. An increase in the length of the side piles will increase the vertical bearing capacity and bending bearing capacity. When the length of the side piles is close to the central pile, the increase is more apparent. Finally, increasing the number of piles will increase the horizontal bearing capacity; however, the growth rate is small because of the pile group effect.


Author(s):  
Yuqi Wu ◽  
Qing Yang ◽  
Dayong Li ◽  
Yu Zhang

Suction caissons supporting offshore wind turbines are exposed to great horizontal loading above the soil surface, which may lead to overturning failure of the caisson. This paper presents a modified three-dimensional failure mechanism to analyze the anti-overturning bearing capacity of suction caissons. The modified failure mechanism is composed of meniscus-conical wedge having meniscus shape at the soil surface and scooped shape. The analytical solution to the anti-overturning bearing capacity of suction caisson is deduced in terms of the limit equilibrium method, following by a parametric study of wedge depth ratio (c) to optimize the critical failure mechanism that satisfies both the force and moment equilibriums. Thus, the methodologies are relatively easy to implement in traditional spreadsheets and the analyses tend to perform very fast. Meanwhile, the effects of gap formation at the rear side of the caisson, loading eccentricity and adhesion factor at caisson-soil interface on anti-overturning bearing capacity are investigated. Comparing with finite element limit analysis results, experimental data and existing theoretical solutions, it is proved that the presented limit equilibrium analysis can satisfactorily predict the anti-overturning bearing capacity of suction caissons with low aspect ratios for offshore wind turbines in uniform and linearly increasing strength clays.


2018 ◽  
Vol 151 ◽  
pp. 1-11 ◽  
Author(s):  
Nan Jia ◽  
Puyang Zhang ◽  
Yonggang Liu ◽  
Hongyan Ding

Author(s):  
Jifu Zhou ◽  
Xu Wang

Abstract High-rise pile cap foundations are generally used to support offshore wind turbines or sea-crossing bridges. They endure complex wave loads due to the interaction of free surface and the cap. An additional pressure increment has been found under the cap when free surface impinges the cap bottom. This additional pressure changes the wave loads on the piles under the cap compared with the case without the cap. In the present paper, we investigate the effects of the cap bottom elevation on the wave loads of the piles under the cap by using fully nonlinear numerical simulations. Based on parameters of waves and the structure used in Donghai Bridge Wind Farm, China, we simulate a number of cases with different cap bottom elevation to explore its influence on wave loads of the piles under the cap. We find that the influence is of significance and requires enough attention.


2012 ◽  
Vol 170-173 ◽  
pp. 2233-2242
Author(s):  
Xiao Wei Tang ◽  
Qi Shao ◽  
Bin Xue Liu

With the fast development of technology, offshore wind power generation is playing a major role for developing renewable sources in the whole world nowadays. According to the proposed Hangzhou Bay wind farm in China, using general-purpose finite element software, bearing capacity behaviors of the multi-piles foundation for offshore wind turbine are simulated in this paper by the 3D finite element method. The Mohr - Coulomb model is adopted as the elastic - plastic constitutive model of the soil and also the Coulomb Friction model as the pile - soil contact model. The bearing capacity behavior of multi-piles foundation for offshore wind turbines under monotonic and combined loading are discussed, also the bearing capacity behaviors by changing diameters, spaces of piles and loading directions as well.


Sign in / Sign up

Export Citation Format

Share Document