Limit Equilibrium Solutions to Anti-overturning Bearing Capacity of Suction Caissons in Uniform and Linearly Increasing Strength Clays

Author(s):  
Yuqi Wu ◽  
Qing Yang ◽  
Dayong Li ◽  
Yu Zhang

Suction caissons supporting offshore wind turbines are exposed to great horizontal loading above the soil surface, which may lead to overturning failure of the caisson. This paper presents a modified three-dimensional failure mechanism to analyze the anti-overturning bearing capacity of suction caissons. The modified failure mechanism is composed of meniscus-conical wedge having meniscus shape at the soil surface and scooped shape. The analytical solution to the anti-overturning bearing capacity of suction caisson is deduced in terms of the limit equilibrium method, following by a parametric study of wedge depth ratio (c) to optimize the critical failure mechanism that satisfies both the force and moment equilibriums. Thus, the methodologies are relatively easy to implement in traditional spreadsheets and the analyses tend to perform very fast. Meanwhile, the effects of gap formation at the rear side of the caisson, loading eccentricity and adhesion factor at caisson-soil interface on anti-overturning bearing capacity are investigated. Comparing with finite element limit analysis results, experimental data and existing theoretical solutions, it is proved that the presented limit equilibrium analysis can satisfactorily predict the anti-overturning bearing capacity of suction caissons with low aspect ratios for offshore wind turbines in uniform and linearly increasing strength clays.

Author(s):  
Wen-Gang Qi ◽  
Jing-Kui Tian ◽  
Hong-You Zheng ◽  
Hai-Yan Wang ◽  
Jing Yang ◽  
...  

2018 ◽  
Vol 151 ◽  
pp. 1-11 ◽  
Author(s):  
Nan Jia ◽  
Puyang Zhang ◽  
Yonggang Liu ◽  
Hongyan Ding

2012 ◽  
Vol 170-173 ◽  
pp. 2233-2242
Author(s):  
Xiao Wei Tang ◽  
Qi Shao ◽  
Bin Xue Liu

With the fast development of technology, offshore wind power generation is playing a major role for developing renewable sources in the whole world nowadays. According to the proposed Hangzhou Bay wind farm in China, using general-purpose finite element software, bearing capacity behaviors of the multi-piles foundation for offshore wind turbine are simulated in this paper by the 3D finite element method. The Mohr - Coulomb model is adopted as the elastic - plastic constitutive model of the soil and also the Coulomb Friction model as the pile - soil contact model. The bearing capacity behavior of multi-piles foundation for offshore wind turbines under monotonic and combined loading are discussed, also the bearing capacity behaviors by changing diameters, spaces of piles and loading directions as well.


Sign in / Sign up

Export Citation Format

Share Document