Experimental Investigation on the Seismic Retrofit of Existing Reinforced Concrete Buildings Using Steel Plate Shear Walls

Author(s):  
Chao-Hsien Li ◽  
An-Chien Wu ◽  
Keh-Chyuan Tsai
Author(s):  
Thiri Thwe ◽  
Nang Su Le′ Mya Thwin ◽  
Ne Min Hein

Low to severe earthquakes occur around the world every year, damaging and causing structural failure in buildings. Consequently, seismic improvements are required for existing buildings that are vulnerable to damage by seismic forces. The objective of this study was to investigate retrofitting strategies in terms of their sustainability. Mandalay, Myanmar, was selected as the study area as it is located near the Sagaing fault, which itself is in a strong earthquake zone (seismic zone 4). A three-storied RC building with a non-seismic design was selected as a case study building. An investigation was carried out into the performance and vulnerability of the building under three earthquake hazard levels. The vulnerability index value was calculated using the Priority Index method. Meanwhile, non-linear static pushover analysis was performed to investigate the performance of the existing building using SAP2000 V14 software. Four different types of retrofitting strategies were considered, namely reinforced concrete shear walls with openings, reinforced concrete shear walls without openings, steel plate shear walls, and finally steel bracing. Among these, it was found that the use of steel plate shear walls was the best retrofitting technique, owing to it having the best performance along with the lowest displacement. Its performance level reached up to the Immediate Occupancy (IO) level even under the conditions of a Maximum Consider Earthquake (MCE).


2013 ◽  
Vol 40 (8) ◽  
pp. 693-710 ◽  
Author(s):  
Murat Saatcioglu ◽  
Dan Palermo ◽  
Ahmed Ghobarah ◽  
Denis Mitchell ◽  
Rob Simpson ◽  
...  

The paper presents observed damage in reinforced concrete buildings during the 27 February 2010 Maule earthquake in Chile. Performance of concrete frame and shear wall buildings are discussed with emphasis on seismic deficiencies in design and construction practices. It is shown that the majority of structural damage in multistorey and high-rise buildings can be attributed to poor performance of slender shear walls, without confined boundary elements, suffering from crushing of concrete and buckling of vertical wall reinforcement. Use of irregular buildings, lack of seismic detailing, and the interference of nonstructural elements were commonly observed seismic deficiencies. A comparison is made between Chilean and Canadian design practices with references made to the applicable code clauses. Lessons are drawn from the observed structural performance.


Sign in / Sign up

Export Citation Format

Share Document