Estimation of Side Slip Angle for Four In-Wheel Motor Independent Drive Electric Vehicle Based on Singular Decomposition and Unscented Kalman Filter

CICTP 2020 ◽  
2020 ◽  
Author(s):  
Yixi Zhang ◽  
Jian Ma ◽  
Xuan Zhao ◽  
Kai Zhang ◽  
Xiaodong Liu
2012 ◽  
Vol 2012.21 (0) ◽  
pp. 89-90
Author(s):  
Junya NAGAI ◽  
Yasutake HARAMIISHI ◽  
Yuuki SHIOZAWA ◽  
Hiroshi MOURI

2013 ◽  
Vol 303-306 ◽  
pp. 975-978
Author(s):  
Hong Yu Zheng ◽  
Chang Fu Zong

The power battery state of charge (SOC) in electric vehicles is not easy to measure accurately or apply a sensor but the expense is increased. However the variable of SOC is great importance to control of electric vehicles. A power battery model is built by the Partnership for a New Generation of Vehicles (PNGV) model to estimate the state of SOC. In order to make a high accurate estimate for SOC value, an information fusion algorithm based on unscented kalman filter (UKF) is introduced to design an observer. The test results show that the observer based information fusion and UKF are effective and accuracy, so it is may apply it the electric vehicle control and observation.


2012 ◽  
Vol 608-609 ◽  
pp. 1627-1630
Author(s):  
Hong Wei Liu ◽  
Hai Feng Wang ◽  
Chong Guo

State of Energy can be used to predict the driving mileage of electric vehicles, design the control strategy of vehicle energy distribution, and improve the safety of electric vehicle. Accurate estimaion of state of energy is one of the key technologies in the study on battery management system of electric vehicle. In this paper, the State of Energy is estimated by using Unscented Kalman Filter, while the process noise and measurement noise is adjusted by using the Sage-Husa adaptive algorithm, as a result the estimation accuracy is improved. The result shows that the State of Energy estimation by using Adaptive Unscented Kalman Filter algorithm is satisfactory to electric vehicle.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1425
Author(s):  
Jiechao Lv ◽  
Baochen Jiang ◽  
Xiaoli Wang ◽  
Yirong Liu ◽  
Yucheng Fu

The state of charge (SOC) estimation of the battery is one of the important functions of the battery management system of the electric vehicle, and the accurate SOC estimation is of great significance to the safe operation of the electric vehicle and the service life of the battery. Among the existing SOC estimation methods, the unscented Kalman filter (UKF) algorithm is widely used for SOC estimation due to its lossless transformation and high estimation accuracy. However, the traditional UKF algorithm is greatly affected by system noise and observation noise during SOC estimation. Therefore, we took the lithium cobalt oxide battery as the analysis object, and designed an adaptive unscented Kalman filter (AUKF) algorithm based on innovation and residuals to estimate SOC. Firstly, the second-order RC equivalent circuit model was established according to the physical characteristics of the battery, and the least square method was used to identify the parameters of the model and verify the model accuracy. Then, the AUKF algorithm was used for SOC estimation; the AUKF algorithm monitors the changes of innovation and residual in the filter and updates system noise covariance and observation noise covariance in real time using innovation and residual, so as to adjust the gain of the filter and realize the optimal estimation. Finally came the error comparison analysis of the estimation results of the UKF algorithm and AUKF algorithm; the results prove that the accuracy of the AUKF algorithm is 2.6% better than that of UKF algorithm.


Sign in / Sign up

Export Citation Format

Share Document