Study on the Parameter Calibration of Interactive Highway Safety Design Model Based on China Interchange Accident Prediction Model

CICTP 2020 ◽  
2020 ◽  
Author(s):  
Aosiman Yilixiati ◽  
Xiaowei Ren ◽  
Shaoxiang Yang ◽  
Tao Hu ◽  
Delong Xiang
2021 ◽  
Author(s):  
Shi-lun Zheng ◽  
Yun-wei Meng ◽  
Hong-qi Cai ◽  
Jian-qun Luo ◽  
Shi-quan Sun

Author(s):  
William H. Levison ◽  
Ozgur Simsek ◽  
Alvah C. Bittner ◽  
Steven J. Hunn

The Interactive Highway Safety Design Model (IHSDM) is a high-priority research area for FHWA. IHSDM is a software system for evaluating the safety of alternative highway designs in a computer-aided design environment. The initial phase of this research program is to develop IHSDM for use in the design of two-lane rural highways. IHSDM includes a driver-vehicle module that simulates the moment-to-moment actions of a single driver-vehicle unit. Reviewed are the computational approaches that have guided the implementation of the driver performance model (DPM) that along with a vehicle model and other components constitute the driver-vehicle module. Five major computational functions of DPM are reviewed: perception, speed decision, path decision, speed control, and path control. Comparison of model results with data from a driving simulator demonstrates the ability of DPM to account for the horizontal curve deflection angle on the speed profile.


Author(s):  
Craig Lyon ◽  
Jutaek Oh ◽  
Bhagwant Persaud ◽  
Simon Washington ◽  
Joe Bared

One major gap in transportation system safety management is the ability to assess the safety ramifications of design changes for both new road projects and modifications to existing roads. To fulfill this need, FHWA and its many partners are developing a safety forecasting tool, the Interactive Highway Safety Design Model (IHSDM). The tool will be used by roadway design engineers, safety analysts, and planners throughout the United States. As such, the statistical models embedded in IHSDM will need to be able to forecast safety impacts under a wide range of roadway configurations and environmental conditions for a wide range of driver populations and will need to be able to capture elements of driving risk across states. One of the IHSDM algorithms developed by FHWA and its contractors is for forecasting accidents on rural road segments and rural intersections. The methodological approach is to use predictive models for specific base conditions, with traffic volume information as the sole explanatory variable for crashes, and then to apply regional or state calibration factors and accident modification factors (AMFs) to estimate the impact on accidents of geometric characteristics that differ from the base model conditions. In the majority of past approaches, AMFs are derived from parameter estimates associated with the explanatory variables. A recent study for FHWA used a multistate database to examine in detail the use of the algorithm with the base model-AMF approach and explored alternative base model forms as well as the use of full models that included nontraffic-related variables and other approaches to estimate AMFs. That research effort is reported. The results support the IHSDM methodology.


2011 ◽  
Vol 3 (9) ◽  
pp. 548-551
Author(s):  
K. Nachimuthu K. Nachimuthu ◽  
◽  
P. Partheeban P. Partheeban

Author(s):  
William H. Levison

The Federal Highway Administration has undertaken a multiyear project to develop the Interactive Highway Safety Design Model (IHSDM), which is a set of software tools to analyze candidate highway geometric designs from a safety standpoint. The IHSDM is envisioned to contain five analysis tools or “modules”: (1) policy review, (2) design consistency, (3) accident analysis, (4) traffic analysis, and (5) driver/vehicle analysis. The structure of the driver/vehicle module is reviewed, with emphasis on the driver component. Modeling issues regarding decision and control are discussed. Major issues include (1) perceptual and decision processes in planning speed and path profiles during curve approach and curve negotiation, and (2) nonlinear versus linear aspects of control.


Author(s):  
Víctor Gabriel Valencia Alaix ◽  
Alfredo García García

La operación vehicular en una carretera convencional depende de la atención adecuada de los adelantamientos de los vehículos lentos por parte de los más rápidos; una alternativa es mediante la provisión de carriles auxiliares a lo largo de la vía antes de pasar a una carretera multicarril.El objetivo es calibrar el modelo de simulación TWOPAS y aplicarlo en una carretera convencional española para estimar y comparar el nivel de servicio estimado en ella y en un carril lento con el resultado del procedimiento del Highway Capacity Manual - HCM.Se observó la operación vehicular en una carretera convencional de España mediante el registro a través de cámaras de control dispuestas a lo largo de la carretera, y en el carril lento, de manera que sirvió para calibrar el modelo de microsimulación TWOPAS considerando parámetros operacionales del parque automotor y aplicándolo para estimar el nivel de servicio.Se aplicó el procedimiento del HCM para estimar el nivel de servicio en segmentos de carretera con carril lento para comparar sus resultados con los obtenidos en la simulación.El modelo de simulación usado fue el TWOPAS, inserto en el Traffic Analisys Module (TAM) del Interactive Highway Safety Design Model (IHSDM), cuyos resultados en términos de Percent Time Spent Following (PTSF), Average Travel Speed (ATS) y otros permite la evaluación operacional.Los resultados y conclusiones permiten valorar la utilidad del modelo, la correspondencia de la realidad operacional en carretera y la norma española y la conveniencia operacional del carril lento estudiado.DOI: http://dx.doi.org/10.4995/CIT2016.2016.4220


Author(s):  
Ezra Hauer ◽  
Douglas W. Harwood ◽  
Forrest M. Council ◽  
Michael S. Griffith

The empirical Bayes (EB) method addresses two problems of safety estimation: it increases the precision of estimates beyond what is possible when one is limited to the use of a 2- to 3-year accident history, and it corrects for the regression-to-mean bias. The increase in precision is important when the usual estimate is too imprecise to be useful. The elimination of the regression-to-mean bias is important whenever the accident history of the entity is in some way connected with the reason why its safety is estimated. The theory of the EB method is well developed. It is now used in the Interactive Highway Safety Design Model and will be used in the Comprehensive Highway Safety Improvement Model. The time has come for the EB method to be the standard and staple of professional practice. The study’s goal is to facilitate the transition from theory into practice.


Sign in / Sign up

Export Citation Format

Share Document