Evaluation of Different Machine Learning Tools in End-to-End Prediction of Vehicle Fuel Consumption in California

Author(s):  
Mostafa Estaji ◽  
John T. Harvey ◽  
Erdem Coleri
Author(s):  
Stephen Mwanje ◽  
Marton Kajo ◽  
Benedek Schultz

2022 ◽  
Vol 54 (8) ◽  
pp. 1-36
Author(s):  
Shubhra Kanti Karmaker (“Santu”) ◽  
Md. Mahadi Hassan ◽  
Micah J. Smith ◽  
Lei Xu ◽  
Chengxiang Zhai ◽  
...  

As big data becomes ubiquitous across domains, and more and more stakeholders aspire to make the most of their data, demand for machine learning tools has spurred researchers to explore the possibilities of automated machine learning (AutoML). AutoML tools aim to make machine learning accessible for non-machine learning experts (domain experts), to improve the efficiency of machine learning, and to accelerate machine learning research. But although automation and efficiency are among AutoML’s main selling points, the process still requires human involvement at a number of vital steps, including understanding the attributes of domain-specific data, defining prediction problems, creating a suitable training dataset, and selecting a promising machine learning technique. These steps often require a prolonged back-and-forth that makes this process inefficient for domain experts and data scientists alike and keeps so-called AutoML systems from being truly automatic. In this review article, we introduce a new classification system for AutoML systems, using a seven-tiered schematic to distinguish these systems based on their level of autonomy. We begin by describing what an end-to-end machine learning pipeline actually looks like, and which subtasks of the machine learning pipeline have been automated so far. We highlight those subtasks that are still done manually—generally by a data scientist—and explain how this limits domain experts’ access to machine learning. Next, we introduce our novel level-based taxonomy for AutoML systems and define each level according to the scope of automation support provided. Finally, we lay out a roadmap for the future, pinpointing the research required to further automate the end-to-end machine learning pipeline and discussing important challenges that stand in the way of this ambitious goal.


2019 ◽  
Vol 7 (4) ◽  
pp. 184-190
Author(s):  
Himani Maheshwari ◽  
Pooja Goswami ◽  
Isha Rana

2021 ◽  
Vol 192 ◽  
pp. 103181
Author(s):  
Jagadish Timsina ◽  
Sudarshan Dutta ◽  
Krishna Prasad Devkota ◽  
Somsubhra Chakraborty ◽  
Ram Krishna Neupane ◽  
...  

Author(s):  
Yun Peng ◽  
Byron Choi ◽  
Jianliang Xu

AbstractGraphs have been widely used to represent complex data in many applications, such as e-commerce, social networks, and bioinformatics. Efficient and effective analysis of graph data is important for graph-based applications. However, most graph analysis tasks are combinatorial optimization (CO) problems, which are NP-hard. Recent studies have focused a lot on the potential of using machine learning (ML) to solve graph-based CO problems. Most recent methods follow the two-stage framework. The first stage is graph representation learning, which embeds the graphs into low-dimension vectors. The second stage uses machine learning to solve the CO problems using the embeddings of the graphs learned in the first stage. The works for the first stage can be classified into two categories, graph embedding methods and end-to-end learning methods. For graph embedding methods, the learning of the the embeddings of the graphs has its own objective, which may not rely on the CO problems to be solved. The CO problems are solved by independent downstream tasks. For end-to-end learning methods, the learning of the embeddings of the graphs does not have its own objective and is an intermediate step of the learning procedure of solving the CO problems. The works for the second stage can also be classified into two categories, non-autoregressive methods and autoregressive methods. Non-autoregressive methods predict a solution for a CO problem in one shot. A non-autoregressive method predicts a matrix that denotes the probability of each node/edge being a part of a solution of the CO problem. The solution can be computed from the matrix using search heuristics such as beam search. Autoregressive methods iteratively extend a partial solution step by step. At each step, an autoregressive method predicts a node/edge conditioned to current partial solution, which is used to its extension. In this survey, we provide a thorough overview of recent studies of the graph learning-based CO methods. The survey ends with several remarks on future research directions.


i-com ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 19-32
Author(s):  
Daniel Buschek ◽  
Charlotte Anlauff ◽  
Florian Lachner

Abstract This paper reflects on a case study of a user-centred concept development process for a Machine Learning (ML) based design tool, conducted at an industry partner. The resulting concept uses ML to match graphical user interface elements in sketches on paper to their digital counterparts to create consistent wireframes. A user study (N=20) with a working prototype shows that this concept is preferred by designers, compared to the previous manual procedure. Reflecting on our process and findings we discuss lessons learned for developing ML tools that respect practitioners’ needs and practices.


2021 ◽  
Vol 59 ◽  
pp. 102353
Author(s):  
Amber Grace Young ◽  
Ann Majchrzak ◽  
Gerald C. Kane

Author(s):  
Hector Donaldo Mata ◽  
Mohammed Hadi ◽  
David Hale

Transportation agencies utilize key performance indicators (KPIs) to measure the performance of their traffic networks and business processes. To make effective decisions based on these KPIs, there is a need to align the KPIs at the strategic, tactical, and operational decision levels and to set targets for these KPIs. However, there has been no known effort to develop methods to ensure this alignment producing a correlative model to explore the relationships to support the derivation of the KPI targets. Such development will lead to more realistic target setting and effective decisions based on these targets, ensuring that agency goals are met subject to the available resources. This paper presents a methodology in which the KPIs are represented in a tree-like structure that can be used to depict the association between metrics at the strategic, tactical, and operational levels. Utilizing a combination of business intelligence and machine learning tools, this paper demonstrates that it is possible not only to identify such relationships but also to quantify them. The proposed methodology compares the effectiveness and accuracy of multiple machine learning models including ordinary least squares regression (OLS), least absolute shrinkage and selection operator (LASSO), and ridge regression, for the identification and quantification of interlevel relationships. The output of the model allows the identification of which metrics have more influence on the upper-level KPI targets. The analysis can be performed at the system, facility, and segment levels, providing important insights on what investments are needed to improve system performance.


Sign in / Sign up

Export Citation Format

Share Document