Reinforcement Learning-Based Signal Control Strategies to Improve Travel Efficiency at Urban Intersection

Author(s):  
Gang Tao ◽  
Shunchao Wang ◽  
Zhibin Li
2020 ◽  
Vol 21 (4) ◽  
pp. 295-302
Author(s):  
Haris Ballis ◽  
Loukas Dimitriou

AbstractSmart Cities promise to their residents, quick journeys in a clean and sustainable environment. Despite, the benefits accrued by the introduction of traffic management solutions (e.g. improved travel times, maximisation of throughput, etc.), these solutions usually fall short on assessing the environmental impact around the implementation areas. However, environmental performance corresponds to a primary goal of contemporary mobility planning and therefore, solutions guaranteeing environmental sustainability are significant. This study presents an advanced Artificial Intelligence-based (AI) signal control framework, able to incorporate environmental considerations into the core of signal optimisation processes. More specifically, a highly flexible Reinforcement Learning (RL) algorithm has been developed towards the identification of efficient but-more importantly-environmentally friendly signal control strategies. The methodology is deployed on a large-scale micro-simulation environment able to realistically represent urban traffic conditions. Alternative signal control strategies are designed, applied, and evaluated against their achieved traffic efficiency and environmental footprint. Based on the results obtained from the application of the methodology on a core part of the road urban network of Nicosia, Cyprus the best strategy achieved a 4.8% increase of the network throughput, 17.7% decrease of the average queue length and a remarkable 34.2% decrease of delay while considerably reduced the CO emissions by 8.1%. The encouraging results showcase ability of RL-based traffic signal controlling to ensure improved air-quality conditions for the residents of dense urban areas.


Entropy ◽  
2019 ◽  
Vol 21 (8) ◽  
pp. 744 ◽  
Author(s):  
Song Wang ◽  
Xu Xie ◽  
Kedi Huang ◽  
Junjie Zeng ◽  
Zimin Cai

Reinforcement learning (RL)-based traffic signal control has been proven to have great potential in alleviating traffic congestion. The state definition, which is a key element in RL-based traffic signal control, plays a vital role. However, the data used for state definition in the literature are either coarse or difficult to measure directly using the prevailing detection systems for signal control. This paper proposes a deep reinforcement learning-based traffic signal control method which uses high-resolution event-based data, aiming to achieve cost-effective and efficient adaptive traffic signal control. High-resolution event-based data, which records the time when each vehicle-detector actuation/de-actuation event occurs, is informative and can be collected directly from vehicle-actuated detectors (e.g., inductive loops) with current technologies. Given the event-based data, deep learning techniques are employed to automatically extract useful features for traffic signal control. The proposed method is benchmarked with two commonly used traffic signal control strategies, i.e., the fixed-time control strategy and the actuated control strategy, and experimental results reveal that the proposed method significantly outperforms the commonly used control strategies.


Author(s):  
Ivan Herreros

This chapter discusses basic concepts from control theory and machine learning to facilitate a formal understanding of animal learning and motor control. It first distinguishes between feedback and feed-forward control strategies, and later introduces the classification of machine learning applications into supervised, unsupervised, and reinforcement learning problems. Next, it links these concepts with their counterparts in the domain of the psychology of animal learning, highlighting the analogies between supervised learning and classical conditioning, reinforcement learning and operant conditioning, and between unsupervised and perceptual learning. Additionally, it interprets innate and acquired actions from the standpoint of feedback vs anticipatory and adaptive control. Finally, it argues how this framework of translating knowledge between formal and biological disciplines can serve us to not only structure and advance our understanding of brain function but also enrich engineering solutions at the level of robot learning and control with insights coming from biology.


2021 ◽  
Vol 22 (2) ◽  
pp. 12-18 ◽  
Author(s):  
Hua Wei ◽  
Guanjie Zheng ◽  
Vikash Gayah ◽  
Zhenhui Li

Traffic signal control is an important and challenging real-world problem that has recently received a large amount of interest from both transportation and computer science communities. In this survey, we focus on investigating the recent advances in using reinforcement learning (RL) techniques to solve the traffic signal control problem. We classify the known approaches based on the RL techniques they use and provide a review of existing models with analysis on their advantages and disadvantages. Moreover, we give an overview of the simulation environments and experimental settings that have been developed to evaluate the traffic signal control methods. Finally, we explore future directions in the area of RLbased traffic signal control methods. We hope this survey could provide insights to researchers dealing with real-world applications in intelligent transportation systems


Sign in / Sign up

Export Citation Format

Share Document