Pounding Tuned Mass Damper: A Novel Device for Passive Structural Vibration Control

Author(s):  
P. Zhang ◽  
G. Song
2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Eun-Taik Lee ◽  
Hee-Chang Eun

This study considers the structural vibration control by a lever-type tuned mass damper (LTMD). The LTMD has a constraint condition to restrict the motion at both ends of the lever. The LTMD controls the dynamic responses at two locations combining the tuned mass damper (TMD) and the constraint condition. The parameters of the LTMD are firstly estimated from the TMD parameters and should be modified by them to obtain from numerical results. The effectiveness of the LTMD is illustrated in two numerical experiments, and the sensitivity of the parameters is numerically investigated. It is shown that the LTMD leads to the remarkable displacement reduction and exhibits more definite control than the TMD system because the LTMD controls the vibration responses at two DOFs. More displacement responses are reduced when the installation locations of the LTMD coincide with the nodes to represent the largest modes’ values at the first and second modes. The application of the LTMD at the dynamic system of a few degrees of freedom (DOFs) is more effective than the system of many DOFs.


Author(s):  
Ge Li ◽  
Qibo Mao ◽  
Yifan Luo ◽  
Yong Wang ◽  
Lei Liu

To realize structural vibration control,a two parameters H2 optimization design was proposed to optimize the tuning ratio and damping ratio for electromagnetic tuned mass damper (EMTMD). The control effect of this two parameters optimization design is better than that of classical tuned mass damper (TMD).For this two parameters optimization,the most important thing is that the inductance of the coil can be set very small and the external load resistance can be positive ,which can avoid the use of complex negative impedance circuit. If Ref.[6] were designed according to the H2 optimization of two parameters, the EMTMD can be used for multi-modal vibration control of structures without connecting negative inductance and negative resistance spontaneously.


2019 ◽  
Vol 52 (7-8) ◽  
pp. 938-946 ◽  
Author(s):  
Josué Enríquez-Zárate ◽  
Hugo Francisco Abundis-Fong ◽  
Ramiro Velázquez ◽  
Sebastián Gutiérrez

The problem of vibrations in civil structures is common; nevertheless, its negative effects can be significantly reduced using structural control methods with intention of maintaining structural welfare as much as possible. This work deals with the study of structural vibration control in a model of a civil-like structure, which consists of three-level building with a tuned mass damper implemented as a passive vibration absorber, mounted on the top of the structure, to attenuate the harmonic vibrations provided by an electromagnetic actuator connected at the base of the primary system. The action of the tuned mass damper is evaluated from an energy approach. The dissipation of energy in the overall system is conducted in an experimental way, where the passive control technique is designed to minimize the undesirable forced dynamic response of the main structure via the tuned mass damper. Experimental results are provided to show the effective performance of the proposed passive vibration absorption scheme to suppress resonant frequency harmonic excitations disturbing the primary system, evaluating the performance energy and contribution of the dissipative device for the energy release in the overall system.


2016 ◽  
Vol 8 (7) ◽  
pp. 168781401665773 ◽  
Author(s):  
Yu Zhang ◽  
Luyu Li ◽  
Baowei Cheng ◽  
Xiaohua Zhang

Sign in / Sign up

Export Citation Format

Share Document