Traffic Operation Risk Assessments of Large-Scale Activities Based on Fuzzy Bayesian Network

2021 ◽  
Author(s):  
Dongdong Geng ◽  
Jian Lu ◽  
Ling Shen ◽  
Zhengqi Yan ◽  
Ling Dai
2020 ◽  
Vol 20 (4) ◽  
pp. 967-979 ◽  
Author(s):  
Ayse Duha Metin ◽  
Nguyen Viet Dung ◽  
Kai Schröter ◽  
Sergiy Vorogushyn ◽  
Björn Guse ◽  
...  

Abstract. Flood risk assessments are typically based on scenarios which assume homogeneous return periods of flood peaks throughout the catchment. This assumption is unrealistic for real flood events and may bias risk estimates for specific return periods. We investigate how three assumptions about the spatial dependence affect risk estimates: (i) spatially homogeneous scenarios (complete dependence), (ii) spatially heterogeneous scenarios (modelled dependence) and (iii) spatially heterogeneous but uncorrelated scenarios (complete independence). To this end, the model chain RFM (regional flood model) is applied to the Elbe catchment in Germany, accounting for the spatio-temporal dynamics of all flood generation processes, from the rainfall through catchment and river system processes to damage mechanisms. Different assumptions about the spatial dependence do not influence the expected annual damage (EAD); however, they bias the risk curve, i.e. the cumulative distribution function of damage. The widespread assumption of complete dependence strongly overestimates flood damage of the order of 100 % for return periods larger than approximately 200 years. On the other hand, for small and medium floods with return periods smaller than approximately 50 years, damage is underestimated. The overestimation aggravates when risk is estimated for larger areas. This study demonstrates the importance of representing the spatial dependence of flood peaks and damage for risk assessments.


2017 ◽  
Vol 32 (8) ◽  
pp. 641-656 ◽  
Author(s):  
Alex Kosgodagan-Dalla Torre ◽  
Thomas G. Yeung ◽  
Oswaldo Morales-Nápoles ◽  
Bruno Castanier ◽  
Johan Maljaars ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Ruo-Hai Di ◽  
Ye Li ◽  
Ting-Peng Li ◽  
Lian-Dong Wang ◽  
Peng Wang

Dynamic programming is difficult to apply to large-scale Bayesian network structure learning. In view of this, this article proposes a BN structure learning algorithm based on dynamic programming, which integrates improved MMPC (maximum-minimum parents and children) and MWST (maximum weight spanning tree). First, we use the maximum weight spanning tree to obtain the maximum number of parent nodes of the network node. Second, the MMPC algorithm is improved by the symmetric relationship to reduce false-positive nodes and obtain the set of candidate parent-child nodes. Finally, with the maximum number of parent nodes and the set of candidate parent nodes as constraints, we prune the parent graph of dynamic programming to reduce the number of scoring calculations and the complexity of the algorithm. Experiments have proved that when an appropriate significance level α is selected, the MMPCDP algorithm can greatly reduce the number of scoring calculations and running time while ensuring its accuracy.


2017 ◽  
Author(s):  
Jack Kuipers ◽  
Thomas Thurnherr ◽  
Giusi Moffa ◽  
Polina Suter ◽  
Jonas Behr ◽  
...  

Large-scale genomic data can help to uncover the complexity and diversity of the molecular changes that drive cancer progression. Statistical analysis of cancer data from different tissues of origin highlights differences and similarities which can guide drug repositioning as well as the design of targeted and precise treatments. Here, we developed an improved Bayesian network model for tumour mutational profiles and applied it to 8,198 patient samples across 22 cancer types from TCGA. For each cancer type, we identified the interactions between mutated genes, capturing signatures beyond mere mutational frequencies. When comparing mutation networks, we found genes which interact both within and across cancer types. To detach cancer classification from the tissue type we performed de novo clustering of the pancancer mutational profiles based on the Bayesian network models. We found 22 novel clusters which significantly improved survival prediction beyond clinical and histopathological information. The models highlight key gene interactions for each cluster that can be used for genomic stratification in clinical trials and for identifying drug targets within strata.


2021 ◽  
Author(s):  
Elco Koks ◽  
Kees Van Ginkel ◽  
Margreet Van Marle ◽  
Anne Lemnitzer

Abstract. Germany, Belgium and The Netherlands were hit by extreme precipitation and flooding in July 2021. This Brief Communication provides an overview of the impacts to large-scale critical infrastructure systems and how recovery has progressed during the first six months after the event. The results show that Germany and Belgium were particularly affected, with many infrastructure assets severely damaged or completely destroyed. Impacts range from completely destroyed bridges and sewage systems, to severely damaged schools and hospitals. We find that large-scale risk assessments, often focused on larger (river) flood events, do not find these local, but severe, impacts. This may be the result of limited availability of validation material. As such, this study will not only help to better understand how critical infrastructure can be affected by flooding, but can also be used as validation material for future flood risk assessments.


Sign in / Sign up

Export Citation Format

Share Document