Design and Digital Performance of Steel Composite Liner (SCL) Renewal of PCCP from Full-Scale Testing and Finite Element Modeling

2021 ◽  
Author(s):  
Ali Alavi ◽  
Graham Bell
2020 ◽  
pp. 109963622092465 ◽  
Author(s):  
Chong Li ◽  
Hui-Shen Shen ◽  
Hai Wang

This paper investigates the nonlinear bending behavior of sandwich plates with functionally graded auxetic 3D lattice core. First and foremost, an auxetic 3D lattice metamaterial with negative effective Poisson’s ratio (EPR) is designed and examined via theoretical and finite element methods with experimental verifications using specimens fabricated by 3D printing. Furthermore, three functionally graded configurations of the auxetic 3D lattice core through the plate thickness direction are proposed and compared with the uniform distribution case. Full-scale finite element modeling and nonlinear thermal-mechanical analysis are performed for the sandwich plates, with the temperature-dependent material properties of both core and face sheets taken into account. Numerical results revealed that the auxetic core can remarkably reduce the lateral deflections, with comparison to their non-auxetic counterpart with positive EPR. Parametric studies are further carried out to demonstrate the effects of functionally graded configurations, temperature rises, facesheet-to-core thickness ratios, boundary conditions, and strut radii on the nonlinear bending load-deflection curves, along with EPR-deflection curves in the large deflection region.


2001 ◽  
Vol 127 (10) ◽  
pp. 1058-1066 ◽  
Author(s):  
J. F. Chen ◽  
S. K. Yu ◽  
J. Y. Ooi ◽  
J. M. Rotter

Author(s):  
J. F. Carney ◽  
M. I. Faramawi ◽  
S. Chatterjee

The development of a family of low-maintenance, reusable crash cushions that employ energy dissipaters made of high-molecular-weight–high-density polyethylene is described. This “smart” energy dissipating thermoplastic is self-restorative and reusable and possesses excellent hysteresis characteristics. The design process involved quasi-static and impact scale model experiments, finite-element modeling, and a full-scale crash testing program conducted according to the guidelines of NCHRP Report 350. A treatment of all of these design components is presented. It is demonstrated that scale model experiments and finite-element modeling are cost-effective tools whose employment can minimize the number of costly full-scale crash tests required to qualify devices as acceptable for use on the National Highway System.


Sign in / Sign up

Export Citation Format

Share Document