Closure to “Behavior of Prestressed Composite Steel Beams”

1964 ◽  
Vol 90 (3) ◽  
pp. 379-379
Author(s):  
Peter G. Hoadley
Keyword(s):  
Author(s):  
Sergey B. Krylov ◽  
Vladimir A. Semenov ◽  
Denis V. Konin ◽  
Alexey S. Krylov ◽  
Lidiya S. Rozhkova

The paper provides a brief overview of domestic and foreign guidelines (manuals) for the design of composite steel and concrete structures: steel-concrete slabs on profiled flooring, combined beams, and columns with rigid reinforcement. The necessity of creation of the actual manual corresponding to the modernlevel of development of construction science, normative documents and design practiceslinked to the new formulary SP 266.1325800.2016 is proved. It will facilitate the design, reduce labor expenditures and improve the reliability of composite steel and concrete structures. The new guidance provides general recommendations for the design of composite steel and concrete structures and the basic regulations for the calculations. The new guidance describes recommendations for modeling of composite steel and concrete structures and elements in the calculated complexes, the recommendations for calculation of combined beams fully concreting rectangular and T-section, partially concreting along with support slab on the lower flange of the beam, columns with rigid reinforcement, shear a connection of composite beams. Recommendations on the registration of creep, shrinkage and crack formation in the appointment of the modulus of elasticity are given. Recommendations on the use of diagrams of the state of concrete, reinforcement, and steel in the calculation of steel-concrete elements on a nonlinear deformation model are given. Recommendations on the use of the range of sheet flooring for steel-reinforced concrete slabs, as well as metal profiles as steel beams and rigid reinforcement in the cross sections of columns and combined beams, are presented. Recommendations on a design of units and details of composite steel and concrete structures are given, refined recommendations on buffer are presented. The examples of connection of steel beams with columns with rigid reinforcement are given. The examples of calculation of composite steel and concrete structures taking subject to the recommendations given in the Manual are presented.


2011 ◽  
Vol 7 (2) ◽  
pp. 28 ◽  
Author(s):  
T. Salama ◽  
H.H. Nassif

 The effective flange width is a concept proposed by various codes to simplify the computation of stress distribution across the width of composite beams. Questions have been raised as to the validity of the effective slab width provisions, since they have a direct effect on the computed ultimate moment as well as serviceability limit states such as deflection, fatigue, and overloading. The objective of this paper is to present results from an experimental and analytical investigation to determine the effective slab width in steel composite beams. The Finite Element Method (FEM) was employed for the analysis of composite steel-concrete beams having variable concrete flange widths. Results were compared to those from tests performed on eight beams loaded to failure. Beam test specimens had variable flange width and various degrees of composite action (shear connectors). The comparison presented in terms of the applied load versus deflection, and strain in the concrete slab show that the AISC-LRFD code is conservative and underestimates the width active. Based on a detailed parametric study an equation for the calculation of the effective flange width is recommended. 


Sign in / Sign up

Export Citation Format

Share Document